| 研究生: |
歐芳郡 Ou, Fang-Chun |
|---|---|
| 論文名稱: |
應用水理模式預測洪水過程與沖刷深度-以大甲溪為例 Prediction of Flood and Scour Depth by Hydrodynamic Model - A case study of Dajia River |
| 指導教授: |
呂珍謀
Leu, Jen-Mou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 橋墩 、沖刷深度 |
| 外文關鍵詞: | bridge pier, scour depth |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橋樑毀壞的主要原因是在颱風或暴雨時期的橋墩沖刷,進而使橋樑基礎裸露或橋樑毀壞。因此,橋樑周圍的沖刷深度需確切的評估,以確保橋樑的安全性。
本論文在橋樑數值模式上,選用CCHE1D模式做為一維動床水理模擬模式,在模式的驗證,以2005年的泰利颱風與石岡壩放水量進行計算,水位模擬與實測趨勢頗為近似。動床水理模式模擬石岡壩放流後下游河道之洪水歷程,模擬之洪峰水位值僅略高於觀測之峰值,洪峰到達時刻與實際情況也十分吻合,本文所選用的模式可以合理模擬下游河道水位變化。另外,在一般沖刷的分析中,利用2008年辛樂克颱風的觀測資料檢驗,結果顯示所選用的動床模組具備模擬大甲溪颱洪事件的能力,能合理預測水位與底床變化。最後本論文應用所選用之模式針對大甲溪石岡壩下游建立橋樑、橋墩水位與沖刷深度模式,以提供橋樑管理單位對於可能產生的災害進行預報作業。
Scour is a primary threat to bridge damages. The bridge scour may induce foundation exposures and bridge failures during typhoon or storm seasons. Therefore, the accurate estimation of scouring depth around bridge piers is expected to provide proper guidance for the safety of bridges.
CCHE1D model was adpoted to predict the scour depth around bridge piers. Some hydraulic and sediment parameters are considered, such as bed material, internal friction angle, particle size, and particle size distribution, and bridge pier geometry. A test analysis based on one-dimensional flood routing model will be performed to provide flow depth and velocity near pier sites. With the establishment of the relationship between flood stage and scour depth around bridge piers, the possible scour depth caused by the flood events in the future could be forecasted. Information predicted can offer an early warning of bridge damage to bridge managers.
1.中興工程科技研究發展基金會,2007,「大甲溪水利建設紀要」。
2.交通部運輸研究所,2010,「河道水位與橋墩沖刷推估模式之建立研究」。
3.吳俊鋐,1999,「複合渠道設置漸變段的局部沖刷」,碩士論文,國立成功大學水利及海洋工程研究所。
4.林呈等,2004,「跨河橋梁訂定封橋水位」,交通部公路總局研究報告。
5.經濟部水利處水利規劃試驗所,2005,「大甲溪流域聯合整體治理規劃檢討」。
6.經濟部水利署水利規劃試驗所,2007,「美國國家計算水科學及工程中心河道變遷模式之引進及應用研究(1-3)」。
7.經濟部水利處水利規劃試驗所,2008,「大甲溪河段輸砂關係試驗研究(1/3)」。
8.經濟部水利處水利規劃試驗所,2009,「大甲溪石岡壩下游河段河床穩定方案之研究(2/4)」。
9.Arulanandan, K., E. Gillogley and R. Tully, “Development of a quantitative method to predict critical shear stress and rate of erosion of naturally undisturbed cohesive soils.” Rep. GL-80-5, U.S. Army Engineers Waterway Experiment Station, Vicksburg, MS, USA(1980).
10.Armanini, A., G. Di Silvio, “A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions.” Journal of Hydraulic Research Vol.26, No. 3, pp.275–292(1988).
11.Brownlie, W. R., “Compilation of fluvial channel data: Laboratory and field.” Rep. No. KH-R43B, W.M. Keck Laboratory of Hydraulics and Water Resources, CIT, Pasadena, Calif(1981).
12.Breusers, H. N. and A. J. Raudkivi, “Scouring”, IAHR Hydraulic Structure Design Manual, Vol. 2, Belkema(1991).
13.C. T. Yang, “Incipient motion and Sediment Transport,” Journal of the Hydraulics Division, ASCE, Vol. 99, No. 10, pp.1679-1704(1973).
14.Dargahi, B., “The controlling mechanism of local scouring,” ASCE, Journal of Hydraulic Engineering, Vol. 116, No.10, pp.1197-1214(1990).
15.Dey S., “Time-variation of Scour in the Vicinity of Circular Piers”,Proc Instn Civ. Engrs Wat., Marit. & Energy, Vol.136, pp.67-75(1999).
16.Engelund, F. and E. Hansen, “A monograph on sediment transport in alluvial streams.” Teknisk Forlag, Copenhagen(1972).
17.Emmett M. Laursen, A.M.ASCE, “The total sediment load of streams,” Journal of the Hydraulics Division, ASCE, Vol. 84, No. 1, pp.1-36(1958).
18.Garbrecht, J., R. Kuhnle and C. Alonson, “A sediment transport capacity formulation for application to large channel networks.” Journal of Soil and Water Conservation, Vol.50, No. 5, pp.527-529(1995).
19.Laursen, E. M., “Scour at Bridge Crossings”, Journal of the Hydraulic Division, ASCE, Vol.86, No.Hy2, February, pp.39-54(1962).
20.Meyer-Peter, E. and R. Mueller , “Formulas for bed-load transport,” Report on Second Meeting of IAHR, Stockholm, Sweden, pp.39-64(1948).
21.Melville, B.W., and Y.M. Chiew, “Time scale for local scour at bridge piers.” Journal of Hydraulic Engineering, ASCE, Vol.125, No. 1, pp.59-65(1999).
22.Melville, B. W., and S. E. Coleman, “Bridge Scour.” Water Resources Publications, LLC., Highlands Ranch, Colorado, USA(2000).
23.Osman, A. M. and C. R. Thorne , “Riverbank stability analysis, I: Theory,” J. Hydraulic Eng., ASCE, Vol.114, No.2, pp.134–150(1988).
24.Osman, A. M. and C. R. Thorne , “Riverbank stability analysis, II: Application,” Journal of Hydraulic Engineering, ASCE, Vol.114, No. 2, pp. 151-172(1988).
25.Proffit, G.T. and A.J. Sutherland , “Transport of nonuniform sediment.” J. Hydr. Res., IAHR, Vol.21, No.1, pp.33-43(1983).
26.Raudkivi A. J., “Founctional trends of scour at bridge piers”, Journal of ydraulic Engineering, ASCE: 112, No.3, 1-13(1986).
27.Richardson, E.V., L.J. Harrison, and S.R. Davis, “Evaluating Scour at Bridges,” HEC-18, Report FHWA-IP-90-017, Washington, D.C.(1991).
28.Toffaleti, F.B., A procedure for computation of the total river sand discharge and detailed distribution, bed to surface. Technical Rep. No. 5. Committee on Channel Stabilization, U.S. Army Corps of Engineers, Vicksburg, MS.(1968).
29.van Rijn, L.C., “Sediment Transport, Part I: Bed Load Transport”, Journal of Hydraulic Engineering, ASCE, Vol.110, No.11, pp.1431-1456(1984).
30.van Rijn, L.C., “Sediment Transport, Part II: Suspended Load Transport”, Journal of Hydraulic Engineering, ASCE, Vol.110, No.11, pp.1613-1641(1984).
31.Wallingford, Sediment transport, the Ackers and White theory revised. Report SR237. HR Wallingford, Wallingford, England(1990).
32.Wu, W., Wang, S.S.Y., and Jia, Y., “Nonuniform sediment transport in alluvial rivers.” J. Hydr. Res., IAHR, Vol.38, No.6, pp.427-434(2000).
33.Wu, W. and D. A. Vieira, “One-dimensional channel network model CCHE1D 3.0 -- Technical manual,” Technical Report No. NCCHE-TR-2002-1, National Center for Computational Hydroscience and Engineering, University of Mississippi, USA(2002).
校內:2021-12-31公開