簡易檢索 / 詳目顯示

研究生: 蘇書玄
Su, Shu Hsuan
論文名稱: 鈷成長於氧化鋅表面(10-10)結構與化學特性之研究
The structural and chemical properties of Co growth on ZnO (10-10) surface
指導教授: 黃榮俊
Huang, J.C.A
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 108
中文關鍵詞: 氧化鋅掃描穿隧電子顯微鏡反射式高能量電子繞射儀X光電子能譜儀紫外光光電子能譜儀成長行為金屬-氧化物介面。
外文關鍵詞: ZnO, cobalt, scanning tunneling microscopy, reflection high-energy electron diffraction, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, growth mode, metal-oxide interface
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究主要是以掃描穿隧電子顯微鏡、反射式高能量電子繞射儀、X光電子能譜儀和紫外光光電子能譜儀來研究鈷成長於氧化鋅表面(10-10)的結構與化學性質之特性。在鈷成長的行為上,厚度較薄的鈷薄膜(~0.5 ML)會形成氧化鈷(2×1)的有序結構。當鈷薄膜的厚度增加至0.7 ML到1 ML時,表面的特徵會轉變成以條紋結構為主;然而當鈷薄膜的厚度再增加時(~3 ML),鈷金屬的團簇將開始於表面上形成。在變化鈷薄膜厚度對化學態的影響研究中顯示,當薄膜厚度於半個原子層時,其初步鈷的化學態為氧化鈷和鈷金屬的混合態;隨著鈷薄膜厚度的增加時,其化學態逐漸地轉變成鈷金屬態為主。由研究結果所表示鈷薄膜初始的成長行為是類二維的型式,隨著鈷薄膜厚度增加時,則轉變為三維型式的成長。
    此外,鈷在氧化鋅表面(10-10)的退火過程中,其聚核與燒結的行為已被仔細地研究。在鈷薄膜厚度與退火溫度的調變範圍下將會影響鈷奈米團簇的尺寸分佈,而吸附的鈷原子其燒結特性會受奧斯瓦爾德熟化效應的影響,且這行為會受到鈷薄膜的厚度所影響。在改變退火溫度對化學態的研究中顯示,在退火過程中,鈷薄膜皆維持以金屬態為主,相較於鈷成長於氧化鋅表面(0001)和(000-1)的系統而言,更具有熱穩定性的特性。此外,退火時間的改變對吸附的鈷原子分佈影響已經藉由掃描穿隧電子顯微鏡來觀察並分析其結果。因此鈷/氧化鋅(10-10)之熱穩定性的研究結果,將對於實際的催化過程上具有潛在的影響性。

    This study elucidates the epitaxial growth structure and chemical state of Co on ZnO (10-10) surface by using scanning tunneling microscopy (STM), reflection high-energy electron diffraction (RHEED), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). In the growth behavior, the well-ordered cobalt oxide (CoOx) (2×1) structure is formed at 0.5 ML Co coverage. Increasing the Co coverage from 0.7 ML to 1 ML allows for the surface characterization by Co stripe structure, while the Co metallic clusters are clearly developed above 3 ML Co coverage. Coverage-dependent measurements of the Co chemical state indicate that the initial Co mixed oxidation and metallic state at submonolayer and gradually transfers to a metallic Co dominated state. The results also suggest that initial growth mode is two dimensional (2D) like and bridged to three dimensional (3D) at higher Co coverages.
    Furthermore, the nucleation and sintering characteristics of Co on ZnO (10-10) during annealing were investigated. The extent of coverage and annealing temperature were varied to modify the size of the Co nanoclusters. The Ostwald ripening process induces the observed sintering behavior of Co adatoms, which depend on the Co coverage. Temperature-dependent X-ray photoemission spectra of the Co chemical state reveal that metallic Co dominates the annealing procedure on ZnO (10-10), and is more thermally stable than Co on both ZnO (0001) and ZnO (000-1). The effects of annealing time and the distribution of Co adatoms were elucidated by STM. Therefore, the results have potential implications for the thermal stability of Co/ZnO (10-10) in real catalytic processes.

    摘要…………………………………………………………………I Abstract…………………...……………………...…………….III Acknowledgements........................................................................IV Contents……………………………………………………….......V List of Tables………..…..……………………………………...VIII List of Figures……………..………………..………....................IX Chapter 1 Introduction…………………………………………...1 1.1 The Surface Science of metal on oxide surface…....…….........................1 1.2 Introduction of ZnO surface ……………………………..……..….……4 1.3 Paper reviews of the metal-deposited on ZnO surface…......................…8 1.3.1 Reviews of Co-deposited on polar ZnO surface……...……..…….8 1.3.2 Reviews of metal-deposited on ZnO (10-10) surface….…….…..13 1.4 Motivation……………………………………………………………...34 References…………………..……………………………………………...35 Chapter 2 Theoretical aspects of instrumentation………………39 2.1 Scanning Tunneling Microscopy (STM)……………………….…...….39 2.1.1 Operation principle of STM…………………………………...…..40 2.1.2 Scanning tunneling spectroscopy (STS)…………………..…….43 2.2 X-ray Photoemission Spectroscopy (XPS)………………..……………45 2.3 Photoelectron Spectroscopy (PES)………………………………..……50 References……………………………………………………………...54 Chapter 3 Experimental equipment……………………………...55 3.1 JEOL SPM System…………….……………………………………….55 3.2 Preparation of STM tip…………………………………………………58 3.3 Evaporator……………...…..…………………………………………..60 3.4 Photoelectron Spectroscopy (PES) system……………………………..62 Chapter 4 Elucidating structure and chemical state of Co growth on ZnO(10-10) surface………………………….……63 4.1 Introduction….…………………..…………..…………………………64 4.2 Experiment………………..……………………………………………66 4.3 STM studies of Co on the ZnO (10-10) surface……………………….68 4.4 XPS characterization of Co on the ZnO (10-10) surface……….…….73 4.5 UPS characterization of Co on the ZnO (10-10) surface……………..78 4.6 Discussion…………………..………………………………………….80 4.7 Summary…………..…………………………………………………...84 References…………………………………......…………………………...85 Chapter 5 Thermally Activated Interaction of Co Growth with ZnO(10-10) surface.......................................................88 5.1 Introduction............................................................................................89 5.2 Experiment..............................................................................................90 5.3 The STM results of various Co coverages on ZnO(10-10) upon annealing…………….………………………………………………92 5.4 The XPS of results of various Co coverages on ZnO(10-10) upon annealing...............................................................................................94 5.5 The STM results of Co on ZnO (10-10) with various annealing time....98 5.6 Discussion.............................................................................................100 5.7 Summary................................................................................................103 References…………………………………......………………………….104 Chapter 6 Conclusion………..….......................................……107

    Chapter 1.
    [1] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2007/
    [2] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, G. Ertl, Phys. Rev. Lett. 65, 3013 (1990).
    [3] E. Weissenbek, H.E. Pettermann, S. Suresh, Acta mater. 45, 3401 (1997).
    [4] X. Deng, N. Chawla, K. K. Chawla, M. Koopman, J. P. Chu, Adv. Eng. Mater. 7, 1099 (2005).
    [5] W. G. Fahrenholtz, K. G. Ewsuk, D. T. Ellerby, R. E. Loehman, J. Am. Ceram. Soc. 79, 2497 (1996).
    [6] F. Gao, S. J. Lee, D. Z. Chi, S. Balakumar, D.-L. Kwong, Appl. Phys. Lett. 90, 252904 (2007).
    [7] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, Nature Nanotech. 3, 429(2008).
    [8] K. Natori, J. Appl. Phys. 76, 4879 (1994).
    [9] M.-K. Liang, O. Deschaume, S. V. Patwardhana, C. C. Perry, J. Mater. Chem. 21, 80 (2011).
    [10] A. Vallee, V. Humblot, C.-M. Pradier, Acc. Chem. Res. 43, 1297 (2010).
    [11] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, J. Bude, Appl. Phys. Lett. 83, 180 (2003).
    [12] C.-T. Lee, H.-W. Chen, H.-Y. Lee, Appl. Phys. Lett. 82, 4304 (2003).
    [13] A. Lajn, H. v. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, M. Grundmann, S. Wickert, C. Vogt, R. Denecke, J. Vac. Sci. Technol. B 27, 1769 (2009).
    [14] L. Vayssieres, K. Keis , S.-E. Lindquist , A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001).
    [15] M.-Y. Lu, J. Song, M.-P. Lu,C.-Y. Lee, L.-J. Chen, Z. L. Wang, ACS Nano 3, 357 (2009).
    [16] E. W. McFarland, J. Tang, Nature 421, 616 (2003).
    [17] G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L.Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 335, 1209 (2012).
    [18] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).
    [19] J. A. Farmer, C. T. Campbell, Science 329, 933 (2010).
    [20] J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B 39, 65 (2002).
    [21] F. Ernst, Mater. Sci. Eng. R 14, 97 (1995).
    [22] U. Diebold, J.M. Pan, T.E. Madey, Surf. Sci. 845, 331 (1995).
    [23] C.R. Henry, Surf. Sci. Rep. 231, 31 (1998).
    [24] C. Wöoll, Prog. Surf. Sci. 82, 55 (2007).
    [25] U. Heinz, U. Landmann, Nanocatalysis, Springer, Berlin, (2007).
    [26] H. M. Chen, C.K. Chen, C.C. Lin, R.-S. Liu, H. Yang, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, D.P. Tsai, J. Phys. Chem. C 115, 21971 (2011).
    [27] X.D. Wang, C. Summers, Z. L. Wang, Nano Lett. 4, 423 (2004).
    [28] A. Wei, L. Pan, W. Huang, Mater. Sci. Eng. B 176, 1409 (2011).
    [29] Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
    [30] J.C. Johnson, H. Yan, R. D. Schaller, P. Yang, P. B. Petersen, R.J. Saykally, Nano Lett. 2, 279 (2002).
    [31] M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, J. Phys. Chem. B 107, 659 (2003).
    [32] Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, J.C. Lu, Appl. Phys. Lett. 85, 5923 (2004).
    [33] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
    [34] U. Özgür, Y.I. Alivov, C. Liua, A. Teke, M.A. Reshchikov, S. Dogän, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
    [35] S. Ghimire, A.D. DiChiara, E. Sistrunk, U.B. Szafruga, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. Lett. 107, 167407 (2011).
    [36] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, Peidong Yang, Nat. Mater. 4, 455 (2005).
    [37] M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
    [38] K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007).
    [39] H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, M. P. Pasternak, Phys. Rev. B 53, 11425 (1996).
    [40] 賴柜宏,國立成功大學博士論文 (2010).
    [41] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
    [42] A. Wander, N. M. Harrison, Surf. Sci. 457, L342 (2000).
    [43] G. Kresse, O. Dulub, and U. Diebold, Phys. Rev. B 68, 245209 (2003).
    [44] A. Wander, N. M. Harrison, Surf. Sci. 468, L851 (2000).
    [45] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S. Turner, G. Thornton, N. M. Harrison, Phys. Rev. Letts. 86, 3811 (2001).
    [46] U. Diebold, L. V. Koplitz, O. Dulub, Appl.Surf. Sci. 237, 336 (2004).
    [47] M. P. Hyman, E. Martono, J. M. Vohs, J. Phys. Chem. C 114, 16892 (2010).
    [48] C. T. Campbell Surf. Sci. Rep. 27, 1 (1997).
    [49] W. G. Xie, F. Y. Xie, X. L. Yu, K. Xue, J. B. Xu, J. Chen, R. Zhang, Appl. Phys. Lett. 95, 262506 (2009).
    [50] J. Dumont, M. C. Mugumaoderha, T. Seldrum, F. Frising, C. Moisson, D. Turover, R. Sporken J. Vac. Sci. Technol. B 25, 1536 (2007).
    [51] J. Llorca, J. A. Dalmon, P. R. de la Piscina, N. Homs, Appl. Catal. A 243, 261 (2003).
    [52] S. M. Heald, T. Kaspar, T. Droubay, V. Shutthanandan, S. Chambers, A. Mokhtari, A. J. Behan, H. J. Blythe, J. R. Neal, A. M. Fox, G. A. Gehring, Phys. Rev. B 79,
    075202 (2009).
    [53] X. H. Han, G. Z. Wang, J. S. Jie, X. L. Zhu, J. G. Hou, Thin Solid Films 491, 249 (2005).
    [54] K. Kobayashi, T. Maeda, S. Matsushima, G. Okada, J. Mater. Sci. Lett. 12, 168 (1993).
    [55] Y. F. Liao, T. W. Huang, J. C. A. Huang, C. H. Lee, IEEE Transactions on Magnetics 45, 2431 (2009).
    [56] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001).
    [57] H. Wei, T. Yao, Z. Y. Pan, C. Mai, Z. H. Sun, Z. Y. Wu, F. C. Hu, Y. Jiang, W. S. Yan, J. Appl. Phys.105, 043903 (2009).
    [58] Q. Y. Xu, S. Zhou, D. Marko, K. Potzger, J. Fassbender, M. Vinnichenko, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, J. Phys. D-Appl. Phys.
    42, 085001 (2009).
    [59] X. J. Ye, D. L. Hou, W. Zhong, C. T. Au, Y. W. Du, Sci. Chin. Ser. G-Phys. Mech. Astron. 52, 21 (2009).
    [60] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci. 504, 271 (2002).
    [61] K. Ozawa, T. Sato, Y. Oba, K. Edamoto, J. Phys. Chem. C 111, 4256 (2007).
    [62] M. Kroll, T. Löber, V. Schott, C. Wöll, U. Köhler, Phys. Chem. Chem. Phys. 14, 1654 (2012).
    [63] M. Kroll, U. Köhler, Surf. Sci. 601, 2182 (2007).
    [64] J. Haber, T. Machej, L. Ungier, J. Ziolkowski, J. Solid State Chem. 25, 207 (1978).
    [65] G. Deroubaix, P. Marcus, Surf. Interface Anal. 18, 39 (1992).
    [66] K. Ozawa, T. Sato, M. Kato, K. Edamoto, Y. Aiura, J. Phys. Chem. B 109, 14619 (2005).
    [67] K. Ozawa, K. Edamoto, Surf. Sci. 524, 78 (2003).
    [68] K. Ozawa, K. Edamoto, Surf. Sci. 547, 257 (2003).
    [69] K. Ozawa, T. Sato, e-J. Surf. Sci. Nanotech. 3, 299 (2005).
    [70] P. H. Citrin, Phys. Rev. B 8, 5545 (1973).
    [71] J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, J. Catal. 209, 306 (2002).
    [72] B. Banach, A. Machocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Catal. Today 176, 28 (2011).
    [73] H. S. Roh, Y. Wang, D. L. King, A. Platon, Y. H. Chin, Catal. Lett. 108, 15 (2006).
    [74] J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B 39, 65 (2002).
    [75] J. Rasko, A. Hancz, A. Erdohelyi, Appl. Catal. A 269, 13 (2004).
    [76] J. Llorca, J. A. Dalmon, P. R. de la Piscina, N. Homs, Appl. Catal. A 243, 261 (2003).
    [77] H. Song, U. S. Ozkan, J. Catal. 261, 66 (2009).
    [78] J. Llorca, P. R. de la Piscina, J. A. Dalmon, J. Sales, N. Homs, Appl. Catal., B 43, 355 (2003).
    [79] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).

    Chapter 2.
    [1] http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/
    [2] G. Binnig, H. Rohrer, IBM J. Res. Develop. 30, 355 (1986).
    [3] G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
    [4] M. Schmid, http://www.iap.tuwien.ac.at/www/surface/stm_gallery/stm_schematic, (2005).
    [5] R. J. Harners, Annu. Rev. Phys. Chem. 40, 531 (1989).
    [6] A. M. Moore, P. S. Weiss, Annu. Rev. Anal. Chem. 1, 857 (2008).
    [7] N. Nilius, M. Kulawik, H.-P. Rust, H.-J. Freund, Surf. Sci. 572, 347 (2004).
    [8] H. J. W. Zandvliet, A. van Houselt, Annu. Rev. Anal. Chem. 2, 37 (2009).
    [9] R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009).
    [10] W. Ho, J. Chem. Phys. 117, 11033 (2002).
    [11] J.R. Jenkin, R.C.G. Leckey, J. Liesegang, JESRP 12, 1 (1977).
    [12] H. Hertz, S. d. Berl, A. d. Wiss, "On an effect of ultraviolet light upon electric discharge" (1877).
    [13] P. D. Innes, Proc. R. Soc. A 79, 442 (1907).
    [14] C. Nordling, E. Sokolowski, K. Siegbahn, Physical Review 105, 1676 (1957).
    [15] E. Sokolowski, C. Nordling, K. Siegbahn, Physical Review 110, 776 (1958).
    [16] A. Fahlman, K. Hamrin, J. Hedman, R. Nordberg, C. Nordling, K. Siegbahn, Nature 210, 4 (1966).
    [17] S. Hagstrom, C. Nordling, K. Siegbahn, Phys. Lett .9, 235 (1964).
    [18] K. Siegbahn, Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences 268, 33 (1970).
    [19] D. Briggs, M.P. Seah, "Practical surface analysis", John Wiley & Sons, vol.1 (1990).
    [20] S. Hüfner, "Photoelectron spectroscopy: principles and applications" Springer-Verlag, 2nd ed. (1996).
    [21] H. Hertz, Ann. Phys. 17, 983 (1887).
    [22] A. Einstein, Ann. Phys. 31, 132 (1905).

    Chapter 4.
    [1] C. T. Campbell, Surf. Sci. Rep.27, 1 (1997).
    [2] M. Haruta, Catal. Today 36, 153 (1997).
    [3] C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
    [4] G. Ertl, H. Knoezinger, J. Weitkamp, Eds. Handbook of Heterogeneous Catalysis; VCH: Weinheim, Germany, (1997).
    [5] J. C. J. Bart, R. P. A. Sneeden, Catal. Today 2, 1 (1987).
    [6] M. S. Spencer, Topics Catal. 8, 259 (1999).
    [7] J. G. Nunan, C. E. Bogdan, K. Klier, K. J. Smith, C. W. Young, R. G. Herman, J. Catal. 116, 195 (1989).
    [8]G. B. Hoflund, W. S. Epling, D. M. Minahan, Catal. Lett. 45, 135 (1997).
    [9] Y. Choi, K. Futagami, T. Fujitani, J. Nakamura, Appl. Catal. A 208, 163 (2001).
    [10] H. Purnama, T. Ressler, R. E. Jentoft, H. Soerijanto, R. Schlögl, R. Schomäcker, Appl. Catal. A 259, 83 (2004).
    [11] J. P. Breen, J. R. H. Ross, Catal. Today 51, 521 (1999).
    [12] S. Liu, K. Takahashi, M. Ayabe Catal. Today 87, 247 (2003)
    [13] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221, 32 (2004).
    [14] H. Sakurai, M. Haruta, Catal. Today 29, 361 (1996).
    [15] S. Sugawa, K. Sayama, K. Okabe, H. Arakawa, Energy Convers. Manage. 36, 665 (1995).
    [16] L. Mo, X. Zheng, C.-T. Yeh, Chem. Commun. 12, 1426 (2004).
    [17] W. G. Xie, F. Y. Xie, X. L. Yu, K. Xue, J. B. Xu, J. Chen, R. Zhang, Appl. Phys. Lett. 95, 262506 (2009).
    [18] J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, R. Sporken, J. Phys. Chem. C 115, 7411 (2011).
    [19] M. P. Hyman, E. Martono, J. M. Vohs, J. Phys. Chem. C 114, 16892 (2010).
    [20] E. Martono, M. P. Hyman, J. M. Vohs, Phys. Chem. Chem. Phys. 13, 9880 (2011).
    [21] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci. 504, 271 (2002).
    [22] K. Ozawa, K. Edamoto, Surf. Sci. 524, 78 (2003).
    [23] K. Ozawa, T. Sato, M. Kato, K. Edamoto, Y. Aiura, J. Phys. Chem. B 109, 14619 (2005).
    [24] J. H. Lai, S. H. Su, H.-H. Chen, J. C. A. Huang, C.-L. Wu, Phys. Rev. B 82, 155406 (2010).
    [25] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater. 18, 3036 (2008).
    [26] C. Y. Li, T. C. Wen, T. H. Lee, T. F. Guo, J. C. A. Huang, Y. C. Lin, Y. J. Hsu, J. Mater. Chem. 19, 1643(2009).
    [27] P. Schröer, P. Krüger, J. Pollmann, Phys. Rev. B 49, 17092 (1994).
    [28] R. Kováčik, B. Meyer, D. Marx, Angew. Chem. Int. Ed. 46, 4894 (2007).
    [29] T. M. Parker, N. G. Condon, R. Lindsay, F. M. Leibsle, G. Thornton, Surf. Sci. 415, L1046 (1998).
    [30] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci. 519, 201 (2002).
    [31] U. Diebold, L.V. Koplitz, O. Dulub, Appl. Surf. Sci. 237, 336 (2004).
    [32] O. Dulub, U. Diebold, G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
    [33] X. -L. Yin, A. Birkner, K. Hänel, T. Löber, U. Köhler, C. Wöll, Phys. Chem. Chem. Phys. 8, 1477 (2006).
    [34] X. Shao, K. Fukui, H. Kondoh, M. Shionoya, Y. Iwasawa, J. Phys. Chem. C 113, 14356 (2009)
    [35] W. C. Lin, C. C. Kuo, M. F. Luo, K. J. Song, M. T. Lin, Appl. Phys. Lett. 86, 043105 (2005).
    [36] W. C. Lin, S. S.Wong, P. C. Huang, C. B. Wu, B. R. Xu, C. T. Chiang, H. Y. Yen, M. T. Lin, Appl. Phys. Lett. 89, 153111 (2006).
    [37] R. Shantyr, Ch. Hagendorf, H. Neddermeyer, Surf. Sci. 566, 68 (2004).
    [38] C. Giovanardi, L. Hammer, K. Heinz, Phys. Rev. B 74, 125429 (2006).
    [39] L. Gragnaniello, S. Agnoli, G. Parteder, A. Barolo, F. Bondino, F. Allegretti, S. Surnev, G. Granozzi, F. P. Netzer, Surf. Sci. 604, 2002 (2010).
    [40] P. Blumentrit, M. Yoshitake, S. Nemšák, T. Kim, T. Nagata, Appl. Surf. Sci. 258, 780 (2011).
    [41] T. Kim, M. Yoshitake, S. Yagyu, S. Nemsak, T. Nagata, T. Chikyow, Surf. Interface Anal. 42, 1528 (2010).
    [42] O. Dulub, M. Batzill, U. Diebold, Topics Catal. 36, 65 (2005).
    [43] P. Lazcano, M. Batzill, U. Diebold, P. Häberle, Phys. Rev. B 77, 035435 (2008).
    [44] K. Ozawa, T. Sato, e-J. Surf. Sci. Nanotech. 3, 299 (2005).
    [45] R. B. Moyes, M. W. Roberts, J. Catal. 49, 216 (1977).
    [46] M. E. Bridge, R. M. Lambert, Surf. Sci. 82, 413 (1979).
    [47] B. J. Tan, K. J. Klabunde, P. M. A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).
    [48] S. C. Petitto, E.M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A: Chem. 281,49 (2008).
    [49] H. A. E. Hagelin-Weaver, G. B. Hoflund, D. M. Minahan, G. N. Salaita, Appl. Surf. Sci. 235, 420 (2004).
    [50] K. Ozawa, T. Sato, Y. Oba, K. Edamoto, J. Phys. Chem. C 111, 4256 (2007).
    [51] R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, N. R. Armstrong, J. Phys. Chem. B 103, 2984 (1999).
    [52] S. Sindhu, M. Heiler, K.-M. Schindler, H. Neddermeyer, Surf. Sci. 541, 197 (2003).
    [53] G. K. Wertheim, S. B. DiCenzo, D. N. E. Buchanan, Phys. Rev. B 33, 5384 (1986).
    [54] H. Hövel, B. Grimm, M. Pollmann, B. Reihl, Phys. Rev. Lett. 81, 4608 (1998).
    [55] A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, V. R. Dhanak, Surf. Sci. 518, 210 (2002).
    [56] H. Moormann, D. Kohl, G. Heiland, Surf. Sci. 80, 261 (1979).
    [57] K. Jacobi, G. Zwicker, A. Gutmann, Surf. Sci. 141, 109 (1984).
    [58] J. Lahtinen, J. Vaari, K. Kauraala, Surf. Sci. 418, 502 (1998).
    [59] L. J. Brillson, J. Vac. Sci. Technol. 16, 1137 (1979).
    [60] U. Diebold, Surf. Sci. Rep. 48, 53 (2003).
    [61] J. Yoshihara, J. M. Campbell, C. T. Campbell, Surf. Sci. 406, 235 (1998).
    [62] D. A. Chen, M. C. Bartelt, R. Q. Hwang, K. F. McCarty, Surf. Sci. 450, 78 (2000).
    [63] D. A. Chen, M. C. Bartelt, S. M. Seutter, K. F. McCarty, Surf. Sci. 464, L708 (2000).
    [64] C. T. Campbell, D. E. Starr, J. Am. Chem. Soc. 124, 9212 (2002).
    [65] A. W. Grant, J. T. Ranney, C. T. Campbell, T. Evans, G. Thornton, Catal. Lett. 65, 159 (2000).
    [66] N. Sanchez, S. Gallego, M. C. Muñoz, Appl. Phys. Lett. 99, 153102 (2011).
    [67] H. S. Roh, A. Platon, Y. Wang, D. L. King, Catal. Lett. 110, 1 (2006).
    [68] H. S. Roh, Y. Wang, D. L. King, A. Platon, Y. H. Chin, Catal. Lett. 108, 15 (2006).
    [69] M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy 32, 3238 (2007).
    [70] D. K. Liguras, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 43, 345 (2003).
    [71] S. S. Y. Lin, D. H. Kim, S. Y. Ha, Catal. Lett. 122, 295 (2008).
    [72] J. Llorca, N. Homs, J. Sales, P. Ramírez de la Piscina, J. Catal. 209, 306 (2002).
    [73] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).
    [74] J. Llorca, N. Homs, P. Ramírez de la Piscina, J. Catal. 227, 556 (2004).
    [75] J. Llorca, P. Ramírez de la Piscina, N. Homs, Chem. Mater. 16, 3573 (2004).

    Chapter 5.
    [1] M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy 32, 3238 (2007).
    [2] D. K. Liguras, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 43, 345 (2003).
    [3] E. Martono, M. P. Hyman, J. M. Vohs, Phys. Chem. Chem. Phys., 13, 9880 (2011).
    [4] J. Llorca, P. Ramírez de la Piscina, J. A. Dalmon, N. Homs, Chem. Mater. 16, 3573 (2004).
    [5] M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J. K. Nørskov, R. Schlögl, Science. 336, 893 (2012).
    [6] M. S. Spencer, Topics Catal. 8, 259 (1999).
    [7] F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S. C. Tsang, Angew. Chem., Int. Ed. Engl. 50, 2162 (2011).
    [8] M. Behrens, J. Catal. 267, 24 (2009).
    [9] O. Dulub, M. Batzill, U. Diebold, Topics Catal. 36, 65 (2005).
    [10] E. D. Batyrev, N. R. Shiju, G. Rothenberg, J. Phys. Chem. C 116, 19335 (2012).
    [11] A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107, 1692 (2007).
    [12] J. I. Yang, J. H. Yang, H. J. Kim, H. Jung, D. H. Chun, H. T. Lee, Fuel 89, 237 (2010).
    [13] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301, 935 (2003).
    [14] B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nature Chem. 3, 634 (2011).
    [15] G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 335, 1209 (2012).
    [16] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989).
    [17] M. Valden, X. Lai, D. W. Goodman, Science 281, 1647 (1998).
    [18] J. A. Farmer, C. T. Campbell, Science 329, 933 (2010).
    [19] S. C. Parker, C. T. Campbell, Phys. Rev. B 75, 035430 (2007).
    [20] J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, J. Catal. 209, 306 (2002).
    [21] B. Banach, A. Machocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Catal. Today
    176, 28 (2011).
    [22] H. S. Roh, Y. Wang, D. L. King, A. Platon, Y. H. Chin, Catal. Lett. 108, 15 (2006).
    [23] J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B 39, 65 (2002).
    [24] J. Rasko, A. Hancz, A. Erdohelyi, Appl. Catal. A 269, 13 (2004).
    [25] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).
    [26] H. Song, U. S. Ozkan, J. Catal. 261, 66 (2009).
    [27] J. Llorca, P. Ramírez de la Piscina, J. A. Dalmon, J. Sales, N. Homs, Appl. Catal., B 43, 355 (2003).
    [28] J. Llorca, J. A. Dalmon, P. Ramírez de la Piscina, N. Homs, Appl. Catal. A, 243, 261 (2003).
    [29] S.H. Su, J.H. Lai, H.-H. Chen, T. H. Lee, Y.-J. Hsu, R. L. Wang, J. C. A. Haung, J. Phys. Chem. C 116, 9917(2012).
    [30] J. H. Lai, S. H. Su, H.-H. Chen, J. C. A. Huang, C.-L. Wu, Phys. Rev. B 82, 155406 (2010).
    [31] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater. 18, 3036 (2008).
    [32] R. B. Moyes, M. W. Roberts, J. Catal. 49, 216 (1977).
    [33] M. E. Bridge, R. M. Lambert, Surf. Sci. 82, 413 (1979).
    [34] B. J. Tan, K. J. Klabunde, P. M. A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).
    [35] M. P. Hyman, E. Martono, J. M. Vohs, J. Phys. Chem. C 114, 16892 (2010).
    [36] S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell, J. Mol. Catal. A: Chem. 281,49 (2008).
    [37] H. A. E. Hagelin-Weaver, G. B. Hoflund, D. M. Minahan, G. N. Salaita, Appl. Surf. Sci. 235, 420 (2004).
    [38] M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov, H. J. Freund, J. Phys.
    Chem. C 113, 6042 (2009).
    [39] H. J. Freund, Angew. Chem., Int. Ed. 36, 452 (1997).
    [40] A. Howard, D. N. S. Clark, C. E. J. Mitchell, R. G. Egdell, V. R. Dhanak, Surf. Sci. 518, 210 (2002).
    [41] C. J. Weststrate, A. Resta, R. Westerstrom, E. Lundgren, A. Mikkelsen, J. N. Andersen, J. Phys. Chem. C 112, 6900 (2008).
    [42] J. Zarraga-Colina, R. M. Nix, Surf. Sci. 600, 3058 (2006).
    [43] Y. Zhou, J. M. Perket, J. Zhou, J. Phys. Chem. C 114, 11853 (2010).
    [44] K. Ozawa, T. Sato, e-J. Surf. Sci. Nanotech. 3, 299 (2005).
    [45] K. Ozawa, K. Edamoto, Surf. Sci. 547, 257 (2003).
    [46] K. Jacobi, G. Zwicker, A. Gutmann, Surf. Sci. 141, 109 (1984).
    [47] M. Hellström1, D. Spångberg1, Hermansson, K. ;Broqvist, P. Phys. Rev. B 86, 235302 (2012).
    [48] Y.-T. Cheng, T.-R. Shan, B. Devine, D. Lee, T. Liang, B. B. Hinojosa, S. R. Phillpot, A. Asthagiri, S. B. Sinnott, Surf. Sci. 606, 1280 (2012).
    [49] K. Ozawa, T. Sato, M. Kato, K. Edamoto, Y. Aiura, J. Phys. Chem. B 109, 14619 (2005).
    [50] M. Kroll, T. Löber, V. Schott, C. Wöll, U. Köhler, Phys. Chem. Chem. Phys. 14, 1654 (2012).
    [51] K. Ozawa, T. Sato, Y. Oba, K. Edamoto, J. Phys. Chem. C 111, 4256 (2007).
    [52] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci., 504, 271 (2002).
    [53] K. Ozawa, K. Edamoto, Surf. Sci. 524, 78 (2003).
    [54] M. Haruta, CATTECH 6, 102 (2002).
    [55] M. Haruta, Catal. Today 36, 153 (1997).
    [56] M. Valden, S. Pak, X. Lai, D. W. Goodman, Catal. Lett. 56, 7 (1998).
    [57] B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005).
    [58] S. S. Y. Lin, D. H. Kim, S. Y. Ha, Catal. Lett. 122, 295 (2008).

    下載圖示 校內:2016-07-29公開
    校外:2016-07-29公開
    QR CODE