| 研究生: |
曾子桐 Zeng, Zi-Tong |
|---|---|
| 論文名稱: |
基於機器學習之案例式推理於事件管理支援模式之建立-以電腦整合製造為例 A Case-Based Reasoning Model based on Machine learning for Support of Incident Management – Case Study of Computer Integrated Manufacturing |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 文字探勘 、機器學習 、案例式推理 、事件管理 、電腦整合製造 |
| 外文關鍵詞: | Text Mining, Machine Learning, Case-Based Reasoning, Incident Management, Computer Integrated Manufacturing |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著製造業面臨多樣化、高效率及高品質的競爭趨勢,應用資訊科技整合企業內部製造資源的電腦整合製造系統逐漸扮演著重要角色。CIM服務台為製造工廠資訊系統的整合性服務窗口,每天需接收到大量的事件反應,為了降低事件對企業所造成的商業損失以及提高使用者對系統的滿意度,服務台必須盡速解決事件以恢復系統服務運作,這也是IT事件管理的首要目標。在過往事件的處理中,主要是仰賴服務台人員本身的經驗與專業,透過人工的方式去執行事件管理流程的各項步驟,但隨著人員流動與知識分散,如何維持系統服務的支援水平已成為服務台重要的挑戰。
本研究將建置一個自動化支援事件管理之模式,藉由過去累積的歷史事件,運用文字探勘與機器學習方法來預測新事件的分類,並且基於分類結果與已知的事件屬性,透過層級分析法與案例式推理建立一個推理模型,從案例知識庫檢索過去相似的事件,協助服務台快速完成事件分類與找出解決方案之建議。
In today's manufacturing industry, computer integrated manufacturing system gradually plays an important role, in order to reduce the negative business impact caused by the interruption of system services, the service desk must resolve the incident as soon as possible to restore the system service operations, which is also the primary goal of IT incident management. In the handling of past incidents, the steps of the incident management process are performed in a manual way, resulting in incident handling being time-consuming and dependent on the knowledge and experience of service desk personnel. Therefore, an effective automated decision support approach is urgently needed to ensure response time and support levels. This study will propose an incident decision support model through machine learning classification technology and case-based reasoning to optimize the overall IT services of computer integrated manufacturing systems and improve user satisfaction.
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59.
Aha, D. W. (1998). The omnipresence of case-based reasoning in science and application. Knowledge-based systems, 11(5-6), 261-273.
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919.
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175-185.
Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., & Petridis, M. (2018). Answering with Cases: A CBR Approach to Deep Learning. Paper presented at the International Conference on Case-Based Reasoning.
Bezerra, G. d. T. V., Pinheiro, V. C. M., & Albuquerque, A. B. (2014). Incident Management Optimization through the Reuse of Experiences and Natural Language Processing. Paper presented at the Quality of Information and Communications Technology (QUATIC), 2014 9th International Conference on the.
Bhattacharya, G., Ghosh, K., & Chowdhury, A. S. (2017). Granger Causality Driven AHP for Feature Weighted kNN. Pattern Recognition, 66, 425-436.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Cannon, D., Wheeldon, D., Lacy, S., & Hanna, A. (2011). ITIL service strategy: The Stationery Office.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1), 3133-3181.
Harrington, J. (1979). Computer integrated manufacturing: RE Krieger Publishing Company.
Jindal, R., Malhotra, R., & Jain, A. (2015). Techniques for text classification: Literature review and current trends. webology, 12(2), 1-28.
Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Paper presented at the European conference on machine learning.
Jäntti, M., & Kalliokoski, J. (2010, 10-15 Feb. 2010). Identifying Knowledge Management Challenges in a Service Desk: A Case Study. Paper presented at the 2010 Second International Conference on Information, Process, and Knowledge Management.
Khan, M. J. (2014). Applications of case-based reasoning in Software Engineering: a systematic mapping study. IET Software, 8(6), 258-268.
Lim, T.-S., Park, K.-R., & Chung, Y. S. (2016). AIPS (Automatic Incident Process System) using Naive Bayesian Classification on ITSM-based System. Indian Journal of Science and Technology, 9(S1).
Mello, T. D. F. d., & Lopes, E. C. (2015, 17-20 June 2015). Using case-based reasoning into a decision support methodology for the incident resolution control in IT. Paper presented at the 2015 10th Iberian Conference on Information Systems and Technologies (CISTI).
Nayebi, M., Dicke, L., Ittyipe, R., Carlson, C., & Ruhe, G. (2018). ESSMArT Way to Manage User Requests. arXiv preprint arXiv:1808.03796.
Noori, B. (2015). Developing a CBR System for Marketing Mix Planning and Weighting Method Selection Using Fuzzy AHP. Applied Artificial Intelligence, 29(1), 1-32.
Rehg, J. A., & Kraebber, H. W. (2012). Computer-Integrated Manufacturing, 2005: Prentice Hall.
Saaty, T. L. (2005). Analytic hierarchy process. Encyclopedia of Biostatistics, 1.
Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval: McGraw-Hill, Inc., New York, NY, USA.
Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620.
Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and people (Vol. 240): Cambridge University Press Cambridge.
Silva, S., Pereira, R., & Ribeiro, R. (2018). Machine learning in incident categorization automation. Paper presented at the 2018 13th Iberian Conference on Information Systems and Technologies (CISTI).
Sim, J., & Wright, C. C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical therapy, 85(3), 257-268.
Tehrani, A. R. F., & Mohamed, F. Z. M. (2011). A CBR-based Approach to ITIL-based Service Desk. Journal of Emerging Trends in Computing and Information Sciences, 2(10), 476-484.
Thangaraj, M., & Sivakami, M. (2018). Text Classification Techniques: A Literature Review. Interdisciplinary Journal of Information, Knowledge & Management, 13, 117-135.
Vasa, K. (2016). Text Classification through Statistical and Machine Learning Methods: A Survey. International Journal of Engineering Development and Research, 4, 655-658.
Yamin, Z., Mengmeng, Z., Xiaomin, G., Zhiwei, Z., & Jianhua, Z. (2017). Research on Matching Method for Case Retrieval Process in CBR Based on FCM. Procedia engineering, 174, 267-274.
Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. Paper presented at the Icml.
Yun, M., Lan, Y., & Han, T. (2017). Automate incident management by decision-making model. Paper presented at the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA).
校內:2024-06-30公開