簡易檢索 / 詳目顯示

研究生: 薛志宗
Shiue, Jyh-Tzong
論文名稱: 氧化鈰添加鍶鋇鈮陶瓷的反應動力學、燒結行為及介電性質研究
The Reaction Kinetics, Sintering Behavior, and Dielectric Properties of Ceria-Doped Strontium Barium Niobate
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 151
中文關鍵詞: 氧化鈰鍶鋇鈮反應動力學燒結行為介電性質
外文關鍵詞: dielectric properties, sintering behavior, reaction kinetic, ceria, strontium barium niobate
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在所有電光材料中,鍶鋇鈮單晶具有最高的線性電光係數、高的焦電係數以及良好的光折射效應(photorefractive effect)。因此,鍶鋇鈮單晶的成長技術及其性質已廣泛被研究,且已有部分產品應用於工業上。但單晶在實際應用上仍然受形狀、大小、機械強度、價格等因素所限制,所以開發多晶鍶鋇鈮陶瓷乃必然的趨勢。本實驗室已使用反應燒結方法製備高密度的多晶鍶鋇鈮陶瓷。CeO2添加物可改善鍶鋇鈮的光學性質,因此欲以反應燒結方法製得鈰添加的鍶鋇鈮陶瓷,需先了解CeO2添加對於SBN的反應動力學、燒結行為及燒結緻密化控制機構等做探討,另外添加物對於其性質亦有很大的影響,故本研究亦討論CeO2添加對於SBN的介電性質的影響。
    在反應動力學方面,以不同比例的SrNb2O6(SN)、BaNb2O6(BN)及CeO2來合成Sr0.5Ba0.5CexNb2O6+δ。首先以不同升溫速率探討不同CeO2添加量的SBN生成量與溫度的關係。以X光繞射定量分析反應生成量並計算其反應動力學。以非等溫的反應動力學方程式來推算不同CeO2添加量的SBN反應活化能(Q)、反應級數(n)及截距(A)。將非等溫動力學所求得的反應活化能(Q)、反應級數(n)及截距(A)代入等溫動力學方程式,發現所預測的在等溫下某一時間下的反應量與實驗結果相符合。
    在燒結行為方面,以近乎相同的顆粒大小粉末之不同CeO2添加量的SBN粉末,探討其恆溫燒結行為,利用修正後的統計燒結理論模式來推算燒結活化能。隨著CeO2添加量的增加,其緻密化速率會降低,而活化能會增加。由晶格常數可以觀察到,隨著CeO2添加量的增加,c軸收縮而a軸膨脹。由Nb5+為擴散限制元素來推論,CeO2添加會產生額外氧離子佔據空的O(4)及O(5)位置的電荷補償缺陷。以EELS及XPS證實額外氧離子佔據空的O(4)及O(5)位置是Ce添加所產生的電荷補償缺陷。
    在CeO2添加SBN的relaxor行為方面,未添加及已添加Ce3+之SBN的P-E曲線可以指數型random field model來描述。而且 random fields, the excess polarization和volume contribution of the excess polarization與Ce添加呈線性關係。再者Ce添加SBN的random fields center為Ce3+-O2- center。

    Strontium barium niobate (SBN) ceramic is a good electro-optic material and has been widely used. Though the properties of the single-crystal SBN have been intensively studied, there are still some restrictions in their applications because of the small size, low mechanical strength, and high cost. Hence, it has been intrigued to develop the strontium barium niobate ceramic. Lee and Fang had used reaction sintering to obtain a high-density, and translucent pure SBN ceramic. Ceria dopant could improve the optical properties of SBN. So if we want to use reaction sintering to obtain ceria doped SBN ceramics, we must understand the effect of ceria dopant on the reaction kinetics, sintering behaviors and the densification mechanism of SBN. On the other hand, the dopant has a great influence on the properties of SBN. So in this study, we also discuss the effect of ceria dopant on the dielectric properties of SBN.
    The reaction kinetics were analyzed by X-ray diffraction for quenched samples and the internal standard method was used to quantify the extent of the reaction. A non-isothermal kinetic empirical model was used to evaluate the activation energy, order of reaction, and rate constant of reaction for forming SBN with different ratio of ceria. We used the parameters, i.e., Q, A and n, to obtain the isothermal reaction kinetics equation and use this isothermal equation to predict the real reaction fraction.
    The sintering behavior has been investigated. The morphological kinetics of sintering was used to evaluate the activation energy of sintering. The densification rate was decreased with the increase of the ceria dopants, and the activation energy of sintering was increased with the increase of the ceria dopants. From the activation energy of sintering and the lattice parameter, we suggest that the charge-compensating defect was the excessive oxygen ion occupying the empty O(4) and O(5) sites.
    We use the P-E curve to study the polarization reversal of ceria-doped SBN. We found that the P-E curve of pure and Ce-doped SBN can be fitted to the power law of random field model. And the random fields, the excess polarization and the volume contribution of the excess polarization were increased with the increase of the ceria dopants. The random field source is the Ce3+-O2- center.

    目 錄 中文摘要………………………………………………………………….I 英文摘要………………………………………………………………..III 目錄……………………………………………………………………….i 圖目錄………………………………………………………………… .iv 表目錄……………………………………………………………………x 第一章 緒論………………………………………………………….1 1-1前言………………………………………………………………….1 1-2 本研究之重點及目的………………………………………………3 第二章 文獻回顧與理論基礎………………………………………….4 2-1 SBN結構………………………………………………………….4 2-2 SBN陶瓷的合成機構……………………………………………. 9 2-2-1 介電性質………...……………………………………………….9 2-2-2非線性光學性質……………………………….………………..14 2-3 陶瓷製程…………………………………………………………..27 2-3-1 粉末顆粒大小對於生胚結構的影響…………………………..27 2-3-2固態反應機構….………………………………………………...32 2-3-3燒結…………..…………………………………………………..44 2-3-4反應燒結…………..……………………………………………..51 2-3-4.1反應燒結機構……..…………………………………………..53 2-3-5陶瓷的顯微結構控制..…………………………………………..60 2-4 SBN的陶瓷製程…………………………………………………..65 2-4-1 SBN的粉末合成機構……..……………………………………65 2-4-2 SN與BN合成SBN的反應機構模型……………………………66 2-4-3 SBN單相燒結之顯微結構演進與控制………………………..68 第三章 實驗方法及步驟…………………………………………….75 3-1 實驗藥品…………………………………………………………..75 3-2 實驗流程及樣品準備……………………………………………..75 3-2-1探討反應動力學之實驗流程……………………………………75 3-2-2探討燒結機構之實驗流程………………………………………76 3-3性質的量測………………………………………………………...77 3-3-1 X光繞射分析……………………………………………………77 3-3-2粉末粒徑分佈的分析……………………………………………77 3-3-3密度量測…………………………………………………………78 3-3-4顯微結構觀察……………………………………………………79 3-3-5定性氧含量分析…………………………………………………79 3-3-6鍵能分析與價數判斷……………………………………………80 3-3-7介電常數對溫度關係的量測……………………………………80 3-3-8 P-E曲線量測……………………………………………………80 3-4數據的分析與計算………………………………………………...81 3-4-1 SBN反應量的分析……………………………………………..81 3-4-2緻密化速率的計算………………………………………………81 第四章 結果與討論………………………………………………….84 4-1 反應動力學的探討……………………………………………….84 4-1-1反應速率對合成量與合成溫度的影響…………………………84 4-1-2反應活化能的估算………………………………………………89 4-2單相燒結行為……………………………………………………...99 4-3電荷補償缺陷(charge-compensated defect)……………….116 4-4 relaxor行為………………………………………………………119 4-4-1 random field model…………………………………………...119 4-4-2 CeO2添加之SBN的random field source…………………133 第五章 結論………………………………………………………….140 第六章 參考文獻…………………………………………………….142 圖 目 錄 圖2-1 SBN在(001)平面的投影………………………………………..5 圖2-2 SBN 之鎢青銅結構中,各離子之配位結構,(a) NbO6 八面體之B1結構,(b) NbO6 八面體之B2結構,(c) Sr 在A1位置的配位結構,(d) Ba 在A2位置的配位結構。…………………………………..6 圖2-3 SBN相圖…………………………………………………………7 圖2-4 SBN結構中,各離子偏移及極化方向示意圖…………………11 圖2-5不同組成之SBN單晶在1KHz下,介電常數(k)隨溫度的變化……………………………………………………………………….12 圖2-6各SBN組成之室溫明視野像(a)50/50(b)60/40(c)75/25……13 圖2-7經由兩波混合(two-wave mixing)產生的能量交換………….19 圖2-8 Nonlinear optical matrix processor…………………………..20 圖2-9 Determinant of photorefractive phenomenon in ferroelectric crystals…………………………………………………………………21 圖2-10 未添加與Ce添加之SBN單晶的吸收光譜………………..22 圖2-11 Role of dopants for photorefractive applications………….23 圖2-12 單一尺寸球形粒子之單層堆積,顯示會有一些缺陷存在….29 圖2-13當壓力存在時,孔隙由平衡轉變成類似裂縫之示意圖……31 圖2-14 平板型的固態-固態反應示意圖…………………………….33 圖2-15 Jander的固態反應模型………………………………………36 圖2-16 Ginstling-Brounshtein的固態反應幾何形狀………………..38 圖2-17 Valensi-Carter機構的模型………………………………….40 圖2-18 燒結初期的各種物質傳輸路徑………….………………….45 圖2-19 (a) 顆粒之間互相接觸 (b)最初燒結階段 (c) 中期燒結階段(d) 後期燒結階段……………………………………………………..46 圖2-20 具相同體積及二面角但不同配位數,(a) n>nc,(b) n<nc之孔隙率,顯示在相同孔隙體積時,包圍在孔隙四周的晶粒愈大則其配位數愈小………………………………………………………………….49 圖2-21 來不及消失就被晶粒所吞噬之孔隙………………………...50 圖2-22溫度對於緻密化速率及反應速率影響的簡易圖…………….56 圖2-23粉末顆粒大小對於緻密化速率及反應速率影響的簡易圖….57 圖2-24 三種不同的反應燒結程序(A)反應速率高於緻密化速率(B)反應與緻密化同時進行(C)緻密化速率高於反應速率……………58 圖2-25 Kirkendall(Frenkel)效應及不同的擴散速率對於頸形(neck shape)的影響…………………………………………………………59 圖2-26 強度與晶粒大小的關係圖……………………………………63 圖2-27 形成SBN反應模型之示意圖,(a) 胚體粉末堆積情形,其排列堆積情形由所配製的組成決定,(b) 反應初期,Sr和Ba離子藉由表面擴散於SN或BN粉末顆粒表面覆蓋一層所配組成的Sr/Ba比例之離子,(c) 於每一粉末顆粒表面直接反應形成所配組成的SBN殼,然後Sr和Ba離子再經由步驟(b)並通過所形成的SBN殼繼續反應………67 圖2-28組成為(Sr0.6Ba0.4)O:Nb2O5=(A)0.48:0.52和(B)0.53:0.47的顯微結構…………………………………………………………….70 圖2-29 燒結SBN60陶瓷的示意圖:(a)”normal”過程導致異常晶粒成長(b)預燒(presintering)(c)兩階段燒結可以阻礙異常晶粒成長…72 圖2-30理論計算靠近SN與SBN50界面處的Sr與Ba離子濃度梯度分佈(假設DSr<DBa)………………………………………………74 圖4-1 Formation of S50 at different temperatures using different heating rates…………………………………………………………..86 圖4-2 Formation of 1CR50 at different temperatures using different heating rates…………………………………………………………..87 圖4-3 Formation of 2CR50 at different temperatures using different heating rates…………………………………………………………..88 圖4-4 Plot of ln(β(dα/dT)) vs. (1/T) for S50 at different heating rates for a constant reaction fraction………………………………………90 圖4-5 Plot of ln(β(dα/dT)) vs. (1/T) for 1CR50 at different heating rates for a constant reaction fraction………………………………..91 圖4-6 Plot of ln(β(dα/dT)) vs. (1/T) for 2CR50 at different heating rates for a constant reaction fraction………………………………..92 圖4-7 Plots of the intercept I versus ln(1-α) of Sr0.5Ba0.5CexNb2O6+δ, one for x=0 showing two linear regions, another for x=0.01 and 0.02 showing one linear region……………………………………………95 圖4-8 The comparison of the theoretical reaction fraction evaluated from Eq.(4) and the experimental reaction fraction of 1CR50, and 2CR50 holding at 1000℃ for various time using a heating rate of 20℃/min……………………………………………………………….98 圖4-9 The densification behavior of the powder compacts of S50 isothermally sintered at 1240℃,1250℃ and 1270℃ in air………100 圖4-10 The densification behavior of the powder compacts of 1CeS50 isothermally sintered at 1330℃,1340℃ and 1350℃ in air……………………………………………………………………...101 圖4-11 The densification behavior of the powder compacts of 2CeS50 isothermally sintered at 1320℃, 1330℃, and 1340℃ in air……………………………………………………………………..102 圖4-12 The densification behavior of the powder compacts of 4CeS50 isothermally sintered at 1320℃, 1330℃, and 1340℃ in air……………………………………………………………………..103 圖4-13 Densification rate as a function of the relative density at 1270℃ in air for S50 and 4CeS50 ………………………………...104 圖4-14 The Arrhenius plot of ln(εT) as a function of (1/T) for S50 at different temperatures and at each density, in which the densification rate, ε, is evaluated from the slope of 圖4-9……..105 圖4-15 The Arrhenius plot of ln(εT) as a function of (1/T) for S50 at different temperatures and at each density, in which the densification rate, ε, is evaluated from the slope of 圖4-10…….106 圖4-16 The Arrhenius plot of ln(εT) as a function of (1/T) for S50 at different temperatures and at each density, in which the densification rate, ε, is evaluated from the slope of 圖4-11…….107 圖4-17 The Arrhenius plot of ln(εT) as a function of (1/T) for S50 at different temperatures and at each density, in which the densification rate, ε, is evaluated from the slope of 圖4-12……..108 圖4-18 Variation of the activation energy of the isothermal sintering as a function of the doped Ce content for S50, 1CeS50, 2CeS50, and 4CeS50……………………………………………………………99 圖4-19 X-ray photoelectron spectra of cerium 3d of S50 mixed with Ce(NO3)3, 4CeS50, and CeO2……………………………………..103 圖4-20 The microstructures observed by the FETEM for compositions of (a)4CeS50, (b)5CeS50, and (c)6CeS50 sintered at 1350℃ in air for 1h at the heating rate of 10℃/min………………104 圖4-21 The lattice parameters for S50 doped with different amount of CeO2 sintered at 1350℃ in air for 1h at a heating rate of 10℃/min……………………………………………………………...105 圖4-22 The comparison of (a) EELS data and (b) the electron energy loss near edge fine structure (ELNES) of oxygen-K edge of 6CeS50 and S50…………………………………………………….107 圖4-23 The binding energy of Nb 2p3/2 obtained from the XPS measurement of S50, 2CeS50, 4CeS50, and 6CeS50, showing that it linearly increases with the increase of Ce doping…………108 圖4-24 P-E curves for Sr0.5Ba0.5Nb2O6 taken at maximum ac drive amplitudes of (a) 602, (b) 482, and (c) 361V/cm and temperature of 20℃. Data are shown for measurement frequencies of 10-1-103 Hz…………………………………………………………120, 121, 122 圖4-25 P-E curves for Sr0.5Ba0.5Ce0.01Nb2O6+δ taken at maximum ac drive amplitudes of (a) 602, (b) 482, and (c) 361V/cm and temperature of 20℃. Data are shown for measurement frequencies of 10-1-103 Hz…………………………………………….123, 124, 125 圖4-26 P-E curves for Sr0.5Ba0.5Ce0.02Nb2O6+δ taken at maximum ac drive amplitudes of (a) 602, (b) 482, and (c) 361V/cm and temperature of 20℃. Data are shown for measurement frequencies of 10-1-103 Hz……………………………………………..126, 127, 128 圖4-27 Remanent polarizations as a function of measurement frequency taken at maximum ac drive amplitudes of (a) 602V/cm, (b) 482, and (c) 361 and temperature of 20℃………….129,130,131 圖4-28 The coefficient c as a function of the Ce doping amount.134 圖4-29 The coefficient c' as a function of the Ce doping amount135 圖4-30 The relaxation time as a function of the Ce doping amount………………………………………………………………..136 圖4-31 The random field as a function of the Ce doping amount137 表 目 錄 表2-1 不同組成的SBN陶瓷之晶格常數與密度表………………….8 表2-2 SBN單晶之鐵電及光學性質………………………………….24 表2-3 Self-pumped phase conjugate response time for bronze crystals…………………………………………………………………25 表2-4 Goals for photorefractive studies and current status of Ce-doped tungsten bronze crystals…………………………………26 表2-5 常用反應動力學理論方程式……………………………………43 表2-6擴散控制過程中,潛變/晶粒大小依存關係…………………….64 表2-7 calcining後產生的相及1400℃燒結後的顯微結構發展……..71 表4-1不同CeO2添加量之SBN的活化能…………………………...93 表4-2由圖4-7之不同CeO2添加量的SBN的三條直線分別得到(4-12)式之截距(A)及斜率(n)……………………………………..97

    1. P. B. Jamieson, S. S. Abrahams and J. L. Bernstein, "Ferroelectric Tungsten Bronze-Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78," J. Chem. Phys., 48, 5048 (1968).
    2. H. B. Sachse, in Semiconducting Temperature Sensors and their Applications, John Wiley & Sons, Inc. New York, 1974 p.139.
    3. J. M. Herbert, in Ferroelectric Transducers and Sensors, Gorgen and Breach, Science Publishers, Inc., 1982 p.266.
    4. R. R. Neurgaonkar, W. F. Hall, J. R. Oliver, W. W. Ho and W. K. Cory, Ferroelectrics 87, 167 (1988).
    5. A. J. Moulson, and J. M. Herbert, p.318, in Electroceramics, Chapman and Hall, Inc., 1988.
    6. P. V. Lenzo, E. G. Spencer, and A. A. Ballman, "Electro-Optic Coefficients of Ferroelectrics Strontium Barium Niobate," Appl. Phys. Lett., 11[1], 23 (1967).
    7. R. R. Neurgaonkar and W. K. Cory, "Progress in Photorefractive Tungsten Bronze Crystals," J. Opt. Soc. Am. B: 3[2], 274-82 (1986).
    8. R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, M. D. Ewbank, and W. F. Hall,” Development and Modification of Photorefractive Properties in the Tungsten Bronze Family Crystals,” Opt. Eng., 26[5] 392 -405(1987).
    9. A. M. Glass,” Investigation of the electrical properties of Sr1-xBaxNb2O6 with special reference to pyroelectric detection,” J. Appl. Phys., 40, 4699-713 (1969).
    10. B. Jimenez, R. Gomez, C. Alemany, J. Mendiola, and E. Maurer, Ferroelectrics 38, 845 (1981).
    11. K. Nagata, Y. Yamamoto, H. Igarashi, and K. Okazaki, “Properties of the Hot-Pressed Strontium Barium Niobate Ceramics,” Ferroelectrics, 38, 853-856 (1981).
    12. B. Jimenez, C. Alemany, J. Mendiola, and E. Maurer, J. Phy. Chem. Solid, 46, 1383 (1985).
    13. V. G. Zhdanov, E. G. Kostsov, V. K. Malinovsky, L. D. Pokrovsk and L. N. Sterolyukhina, Ferroelectrics, 29, 219 (1980).
    14. V. D. Anmtsigin, V. M. Egorov, E. G. Kostsov, V. K. Malinovsky and L. N. Sterolyukhina, Ferroelectrics, 63, 235 (1985).
    15. R. R. Neurgaonkar, I. S. Santha and J. R. Oliver, Mat. Res. Bull., 26, 983 (1991).
    16. S. I. Lee and W. K. Choo,” Modified Ferroelectric High Density Strontium Barium Niobate Ceramics for Pyroelectric Applications,” Ferroelectrics, 87, 209 (1988).
    17. N. S. VanDamme, a. E. Sutherland, L. Jones, K. Bridger, and S. R. Winzer, "Fabrication of Optically Transparent and Electrooptic Strontium Barium Niobate Ceramics," J. Am. Ceram. Soc., 74[8] 1785 (1991).
    18. J. R. Carruther and M. Grasso "Phase Equilibria Relations in the Ternary System BaO-SrO-Nb2O5," J. Electrochem. Soc., 117, 1426(1970).
    19. T. T. Fang, N. T. Wu, and F. S. Shiau, "Formation Mechanism of Strontium Niobate Ceramic Powders," J. Mater. Sci. Lett., 13, 1746-48 (1994).
    20. S. B. Deshpande, H. S. Potdar, P. D. Godbole, and S. K. Date, " Preparation and Ferroelectric Properties of SBN:50," J. Am. Ceram. Soc., 75[9], 2581 (1992).
    21. S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso," Preparation of Strontium Barium Niobate by Sol-Gel method," J. Am. Ceram. Soc., 75[6]1697-1700 (1992).
    22. 李文景,博士論文,國立成功大學,1997.
    23. A. A. Ballman and H. Brown, "The Growth and Property of Sr1-x BaxNb2O6, A Tungsten Bronze Ferroelectric," J. Cryst. Growth 1, 311 (1967).
    24. K. Sayano, A. Yariu, and R. R. Neurgaonkar, Appl. Phys. Lett., 55, 328 (1989).
    25. R. A. Vazguez, M. D. Ewbank, and R. R. Neurgaonkar, Opt. Comm., 80[3-4], 253 (1991).
    26. R. A. Vazguez, F. R. Vachss, R. R. Neurgaonkar, J. Opt. Soc. Am. B 8[9], 1932 (1991).
    27. C. Herring, J. Appl. Phys., 21, 301 (1950).
    28. F. F. Lange,” Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67[2] 83-89 (1984).
    29. M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, Mater. Sci. Eng., 60, 275-80 (1983).
    30. W. H. Rhodes,” Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Am. Ceram. Soc., 64[1] 19-22 (1981).
    31. E. A. Barringer and H. K. Bowen, J. Am. Ceram. Soc., 65, C-119 (1982).
    32. E. A. Barringer, R. J. Brook, and H. K. Bowen, in "Materials Science Research, Vol.16, Sintering and Heterogeneous Catalysis," Edited by G. C. Kuczynski, A. E. Miller, and G. A. Sargent, Plenum Press, New York, 1984 pp.1-21.
    33. Eric Liniger and Rishi Raj,” Packing and Sintering of Two- Dimensional Structures Made from Bimodal Particle Size Distributions,” J. Am. Ceram. Soc., 70[11] 843-849 (1987).
    34. A. G. Evans,” Considerations of Inhomogeneity Effects in Sintering,” J. Am. Ceram. Soc., 65[10] 497-501 (1982).
    35. R. Pampuch, Ceramic Materials an Introduction to Their Properties, Elsevier Scientific Publishing Company, New York, 1976 p.130-136.
    36. R. L. Coble, J. Appl. Phys., 32, 787 (1961).
    37. C. Greskovich and J. H. Rosolowski,” Sintering of Covalent Solids,” J. Am. Ceram. Soc., 59[7-8] 336-343 (1976).
    38. D. W. Budworth, Trans, Brit. Ceram. Soc., 69, 29 (1970).
    39. F. F. Lange and B. I. Davis, in " Advances in Ceramics, Vol.12, Science and Technology of Zirconua II", Edited by N. Claussen, M. Ruhle, and A. H. Heuer, Am. Ceram. Soc. Columbus, OH, 1984, pp.699-713.
    40. Junhong Zhao and Martin P. Harmer,” Effect of Pore Distribution on Microstructure Development: II, First- and Second-Generation Pores,” J. Am. Ceram. Soc., 71[7]530-539 (1988).
    41. T. T. Fang and H. Palmour III,” Useful Extensions of the Statistical Theory of Sintering,” Ceram. Int., 15, 329-335 (1989).
    42. T. T. Fang and H. Palmour III, Ceram. Int., 16, 1 (1990).
    43. T. T. Fang and H. Palmour III, Ceram. Int., 16, 63 (1990).
    44. G. C. Kuczynski, pp. 325-37 in Sintering and Related Phenomena. Edited by G. C. Kuczynski, Mater. Sci. Res. Vol.10, Plenum Press, New York, 1975.
    45. G. C. Kuczynski, pp. 233-245, in Ceramic Microstructure 76, Edited by R. M. Fulrath and J. A. Pask, Westview Press, Boulder, Colorado, 1977.
    46. The Ph.D. Thesis of H. L. Hsieh, National Cheng Kung University, Tainan, Taiwan, R.O.C.
    47. W. Jander, "Reaktionen im Festen Zustande bie Hoheren Temperaturen," Z. Anorg. Allg. Chem., (in Ger.), 163, 1-30 (1927).
    48. A. M. Gistling and B. I. Brounshtein, "Concerning the Diffusion Kinetics of Reactions in Spherical Particles," J. Appl. Chem. USSR, 23, 1327 (1950).
    49. G. Valensi," Cinetique de I'Oxydation de Spherules et de Poudres Matallics ", C. R. Hebd. Seances Acad. Sci., (in Fr.), 203, 309 (1936).
    50. R. E. Carter," Kinetic Model for Solid-State Reactions," J. Chem. Phys., 34, 2010 (1961).
    51. E. A. Cooper and T. O. Mason, "Mechanism of La2CuO4 Solid- State Powder Reaction by Quantitative XRD and Impedance Spectroscopy," J. Am. Ceram. Soc., 78[4]857-864 (1995).
    52. I. Halikia and E. Milona, "Kinetic Study of the Solid State Reaction between Alpha-Al2O3 and ZnO for Zinc Ferrite Formation," Canadian Metallurgical Quarterty, 33[2], 99-109 (1994).
    53. G. A. Kolta, S. Z. El-Tawil, A. A. Ibrahim and N. S. Felix, "Kinetics and mechanism of Zinc Ferrite Formation," Thermochim. Acta, 36, 359-66 (1980).
    54. Donald L. Branson, "Kinetics and Mechanism of the Reaction between Zin Oxide and Aluminum Oxide," J. Am. Ceram. Soc., 48[11] 591-595 (1965).
    55. A. M. M. Gadalla, "Kinetic of the Decomposition of Hydration Oxalates of Calcium and Magnesium in Air," Thermochim. Acta, 74, 255 (1984).
    56. Julius Beretka, "Kinetic Analysis of Solid-State Reactions between Powdered Reactants," J. Am. Ceram. Soc., 67[9]615- 620 (1984).
    57. Hiromu Sasaki, "Introduction of Particles Size Distribution into Kinetics of Solid-State Reactions ", J. Am. Ceram. Soc., 47[10] 512-516 (1964).
    58. P. C. Kapur, "Kinetics of Solid-State Reactions of Particulate Ensembles with Size Distributions," J. Am. Ceram. Soc., 56[2] 79-81(1973).
    59. C. H. Bamford and C. F. H. Tipper (Eds.), Comprehensive Chemical Kinetics, Vol.22, Reactions in Solid State. Elsevier Scientific Publishing Company New York, 1980.
    60. Wen-Jiung Lee and Tsang-Tse Fang,” Nonisothermal Reaction Kinetics of SrNb2O6 and BaNb2O6 for the Formation of SrxBa1-xNb2O6,” J. Am. Ceram. Soc., 81 [1] 193 (1998).
    61. Wen-Jiung Lee and Tsang-Tse Fang,” Effect of the Strontium: Barium Ratio and Atmosphere on the Sintering Behavior of Strontium Barium Niobate,” J. Am. Ceram. Soc., 81 [2] 300-304 (1998).
    62. T. Dosdale, and R.J. Brook,” Comparison of Diffusion Data and of Activation Energies,” J.Am.Ceram.Soc.,66[6]392-395 (1983).
    63. James D. Hodge, ”Comment on “Comparison of Diffusion Data and of Activation Energies,”” J.Am.Ceram.Soc.,66[11]c216- c217 (1983)
    64. E. Dörre, etc., Alumina: Processing, Properties, and Applications, Springer-Verlag, Berlin, 1984.
    65. R. Neimann, K. Buse, R. Pankrath, and M. Neumann,” XPS study of photorefractive Sr0.61Ba0.39Nb2O6: Ce crystals,” Solid State Commu., 98[3]209-213(1996).
    66. Th. Woike, G. Weckwerth, H. Palme, and R. Pankrath, “ Instrumental Neutron Activation and Absorption Spectroscopy of Photorefractive Strontium-Barium Niobate Single Crystals Doped with Cerium,” Solid State Commu., 102[10]743-747 (1997)
    67. N. C. Giles, J. L. Wolford, G. J. Edwards, and R. Uhrin, ” Optical and magnetic resonance study of impurity ions in undoped and cerium-doped Sr0.61Ba0.39Nb2O6,” J. Appl. Phys., 77 [3] 976-980 (1995).
    68. M. Gao, R. Pankrath, S. Kapphan, V. Vikhnin,” Light-induced charge transfer and kinetics of the NIR absorption of Nb4+ polarons in SBN crystals at low temperature,” Appl. Phys. B, 68[5]849-858(1999).
    69. Helen M. Chan, Martin P. Harmer, and Donald M. Smyth,” Compensating Defects in Highly Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 69 [6] 507-510 (1986).
    70. Dwight Viehland and Yun-Han Chen, J. Appl. Phys., 88[11] 6696- 6707 (2000).
    71. Yu-Guo Wang, Wolfgang Kleemann, Theo Woike, and Rainer Pankrath,“ Atomic Force Microscopy of Domains and Volume Holograms in Sr0.61Ba0.39Nb2O6:Ce3+,” Phys. Rev. B, 61[5]3333- 3336(2000).
    72. Dwight Viehland, Z. Xu, and Weng-Hsing Huang, “Structure-Property Relationships in Strontium Barium Niobate, I. Needle-Like Nanopolar Domains and the Metastably-Locked Incommensurate Structure,” Philosophical Magazine A, 71[2] 205-217(1995).
    73. P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase Transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear Birefringence Studies of Spontaneous and Precursor Polarization,” Eur. Phys. J. B, 14,633-637(2000).
    74. J. G. Bednorz and K. A. Müller, Phys. Rev. Lett., 52[25]2289- 2292(1984).
    75. Jyh-Tzong Shiue and Tsang-Tse Fang,” The Charge Compensating Defect in Ceria Doped Strontium Barium Niobate by EELS and XPS,” accepted by J. Am. Ceram. Soc.
    76. Jyh-Tzong Shiue and Tsang-Tse Fang,” The Sintering Behavior of CeO2-doped Strontium Barium Niobate Ceramics,” J. Euro. Ceram. Soc. 22, [9-10] 1705–1709(2002).
    77. J. Wingbermühle, M. Meyer, O. F. Schirmer, R. Pankrath, and R. K. Kremer,” Electron paramagnetic resonance of Ce3+ in strontium-barium niobate,” J. Phys.: Condens. Matter, 12, 4277-4284(2000).
    78. L. A. Bursill and Peng Ju Lin,” Chaotic States Observed in Strontium Barium Niobate,” Philosophical Magazine B, 54[2] 157-170(1986).
    79. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata,” High- sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett., 30[12] 631-633 (1977).
    80. R. J. Brook, “Controlled Grain Growth,” pp 331-364, in Treatise on Materials Science and Technology, vol. 9, edited by F. F. Y. Wang, Academic Press, New York, 1976.
    81. Junichi Takahashi, Shiro Nishiwaki and Kohei Kodaira,” Sintering and Microstructure of Sr0.6Ba0.4Nb2O6 Ceramics,” pp 363-370, in Ceramic Transactions vol.41: Grain Boundary and Interfacial Phenomena in Electronic Ceramics, edited by Lionel M. Levinson and Shin-ichi Hirano, American Ceramic Society, Columbus, OH,1994.
    82. Han-Young Lee and R. Freer,” The Mechanism of Abnormal Grain Growth in Sr0.6Ba0.4Nb2O6 Ceramics,” J. Appl. Phys., 81[1] 376-382(1997).
    83. Han-Young Lee and R. Freer,” Abnormal Grain Growth and Liguid-Phase Sintering in Sr0.6Ba0.4Nb2O6 (SBN60) Ceramics,” J. Mater. Sci., 33, 1703-1708(1998).
    84. Tsang-Tse Fang, Edin Chen and Wen-Jiung Lee, “On the Discontinuous Grain Growth of SrxBa1-xNb2O6 Ceramics,” J. Euro. Ceram. Soc., 20,527-530(2000).
    85. Myoung-Sup Kim, Joon-Hyung Lee, Jeong-Joo Kim, Hee- Young Lee, and Sang-Hee Cho, “Origin of Abnormal Grain Growth in Tungsten Bronze Structured Ferroelectric SrxBa1-xNb2O6 Ceramics,” Jpn. J. Appl. Phys., 41[11B,part1] 7048-7052 (2002).

    下載圖示 校內:2008-10-03公開
    校外:2008-10-03公開
    QR CODE