| 研究生: |
薛志宗 Shiue, Jyh-Tzong |
|---|---|
| 論文名稱: |
氧化鈰添加鍶鋇鈮陶瓷的反應動力學、燒結行為及介電性質研究 The Reaction Kinetics, Sintering Behavior, and Dielectric Properties of Ceria-Doped Strontium Barium Niobate |
| 指導教授: |
方滄澤
Fang, Tsang-Tse |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 氧化鈰 、鍶鋇鈮 、反應動力學 、燒結行為 、介電性質 |
| 外文關鍵詞: | dielectric properties, sintering behavior, reaction kinetic, ceria, strontium barium niobate |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在所有電光材料中,鍶鋇鈮單晶具有最高的線性電光係數、高的焦電係數以及良好的光折射效應(photorefractive effect)。因此,鍶鋇鈮單晶的成長技術及其性質已廣泛被研究,且已有部分產品應用於工業上。但單晶在實際應用上仍然受形狀、大小、機械強度、價格等因素所限制,所以開發多晶鍶鋇鈮陶瓷乃必然的趨勢。本實驗室已使用反應燒結方法製備高密度的多晶鍶鋇鈮陶瓷。CeO2添加物可改善鍶鋇鈮的光學性質,因此欲以反應燒結方法製得鈰添加的鍶鋇鈮陶瓷,需先了解CeO2添加對於SBN的反應動力學、燒結行為及燒結緻密化控制機構等做探討,另外添加物對於其性質亦有很大的影響,故本研究亦討論CeO2添加對於SBN的介電性質的影響。
在反應動力學方面,以不同比例的SrNb2O6(SN)、BaNb2O6(BN)及CeO2來合成Sr0.5Ba0.5CexNb2O6+δ。首先以不同升溫速率探討不同CeO2添加量的SBN生成量與溫度的關係。以X光繞射定量分析反應生成量並計算其反應動力學。以非等溫的反應動力學方程式來推算不同CeO2添加量的SBN反應活化能(Q)、反應級數(n)及截距(A)。將非等溫動力學所求得的反應活化能(Q)、反應級數(n)及截距(A)代入等溫動力學方程式,發現所預測的在等溫下某一時間下的反應量與實驗結果相符合。
在燒結行為方面,以近乎相同的顆粒大小粉末之不同CeO2添加量的SBN粉末,探討其恆溫燒結行為,利用修正後的統計燒結理論模式來推算燒結活化能。隨著CeO2添加量的增加,其緻密化速率會降低,而活化能會增加。由晶格常數可以觀察到,隨著CeO2添加量的增加,c軸收縮而a軸膨脹。由Nb5+為擴散限制元素來推論,CeO2添加會產生額外氧離子佔據空的O(4)及O(5)位置的電荷補償缺陷。以EELS及XPS證實額外氧離子佔據空的O(4)及O(5)位置是Ce添加所產生的電荷補償缺陷。
在CeO2添加SBN的relaxor行為方面,未添加及已添加Ce3+之SBN的P-E曲線可以指數型random field model來描述。而且 random fields, the excess polarization和volume contribution of the excess polarization與Ce添加呈線性關係。再者Ce添加SBN的random fields center為Ce3+-O2- center。
Strontium barium niobate (SBN) ceramic is a good electro-optic material and has been widely used. Though the properties of the single-crystal SBN have been intensively studied, there are still some restrictions in their applications because of the small size, low mechanical strength, and high cost. Hence, it has been intrigued to develop the strontium barium niobate ceramic. Lee and Fang had used reaction sintering to obtain a high-density, and translucent pure SBN ceramic. Ceria dopant could improve the optical properties of SBN. So if we want to use reaction sintering to obtain ceria doped SBN ceramics, we must understand the effect of ceria dopant on the reaction kinetics, sintering behaviors and the densification mechanism of SBN. On the other hand, the dopant has a great influence on the properties of SBN. So in this study, we also discuss the effect of ceria dopant on the dielectric properties of SBN.
The reaction kinetics were analyzed by X-ray diffraction for quenched samples and the internal standard method was used to quantify the extent of the reaction. A non-isothermal kinetic empirical model was used to evaluate the activation energy, order of reaction, and rate constant of reaction for forming SBN with different ratio of ceria. We used the parameters, i.e., Q, A and n, to obtain the isothermal reaction kinetics equation and use this isothermal equation to predict the real reaction fraction.
The sintering behavior has been investigated. The morphological kinetics of sintering was used to evaluate the activation energy of sintering. The densification rate was decreased with the increase of the ceria dopants, and the activation energy of sintering was increased with the increase of the ceria dopants. From the activation energy of sintering and the lattice parameter, we suggest that the charge-compensating defect was the excessive oxygen ion occupying the empty O(4) and O(5) sites.
We use the P-E curve to study the polarization reversal of ceria-doped SBN. We found that the P-E curve of pure and Ce-doped SBN can be fitted to the power law of random field model. And the random fields, the excess polarization and the volume contribution of the excess polarization were increased with the increase of the ceria dopants. The random field source is the Ce3+-O2- center.
1. P. B. Jamieson, S. S. Abrahams and J. L. Bernstein, "Ferroelectric Tungsten Bronze-Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78," J. Chem. Phys., 48, 5048 (1968).
2. H. B. Sachse, in Semiconducting Temperature Sensors and their Applications, John Wiley & Sons, Inc. New York, 1974 p.139.
3. J. M. Herbert, in Ferroelectric Transducers and Sensors, Gorgen and Breach, Science Publishers, Inc., 1982 p.266.
4. R. R. Neurgaonkar, W. F. Hall, J. R. Oliver, W. W. Ho and W. K. Cory, Ferroelectrics 87, 167 (1988).
5. A. J. Moulson, and J. M. Herbert, p.318, in Electroceramics, Chapman and Hall, Inc., 1988.
6. P. V. Lenzo, E. G. Spencer, and A. A. Ballman, "Electro-Optic Coefficients of Ferroelectrics Strontium Barium Niobate," Appl. Phys. Lett., 11[1], 23 (1967).
7. R. R. Neurgaonkar and W. K. Cory, "Progress in Photorefractive Tungsten Bronze Crystals," J. Opt. Soc. Am. B: 3[2], 274-82 (1986).
8. R. R. Neurgaonkar, W. K. Cory, J. R. Oliver, M. D. Ewbank, and W. F. Hall,” Development and Modification of Photorefractive Properties in the Tungsten Bronze Family Crystals,” Opt. Eng., 26[5] 392 -405(1987).
9. A. M. Glass,” Investigation of the electrical properties of Sr1-xBaxNb2O6 with special reference to pyroelectric detection,” J. Appl. Phys., 40, 4699-713 (1969).
10. B. Jimenez, R. Gomez, C. Alemany, J. Mendiola, and E. Maurer, Ferroelectrics 38, 845 (1981).
11. K. Nagata, Y. Yamamoto, H. Igarashi, and K. Okazaki, “Properties of the Hot-Pressed Strontium Barium Niobate Ceramics,” Ferroelectrics, 38, 853-856 (1981).
12. B. Jimenez, C. Alemany, J. Mendiola, and E. Maurer, J. Phy. Chem. Solid, 46, 1383 (1985).
13. V. G. Zhdanov, E. G. Kostsov, V. K. Malinovsky, L. D. Pokrovsk and L. N. Sterolyukhina, Ferroelectrics, 29, 219 (1980).
14. V. D. Anmtsigin, V. M. Egorov, E. G. Kostsov, V. K. Malinovsky and L. N. Sterolyukhina, Ferroelectrics, 63, 235 (1985).
15. R. R. Neurgaonkar, I. S. Santha and J. R. Oliver, Mat. Res. Bull., 26, 983 (1991).
16. S. I. Lee and W. K. Choo,” Modified Ferroelectric High Density Strontium Barium Niobate Ceramics for Pyroelectric Applications,” Ferroelectrics, 87, 209 (1988).
17. N. S. VanDamme, a. E. Sutherland, L. Jones, K. Bridger, and S. R. Winzer, "Fabrication of Optically Transparent and Electrooptic Strontium Barium Niobate Ceramics," J. Am. Ceram. Soc., 74[8] 1785 (1991).
18. J. R. Carruther and M. Grasso "Phase Equilibria Relations in the Ternary System BaO-SrO-Nb2O5," J. Electrochem. Soc., 117, 1426(1970).
19. T. T. Fang, N. T. Wu, and F. S. Shiau, "Formation Mechanism of Strontium Niobate Ceramic Powders," J. Mater. Sci. Lett., 13, 1746-48 (1994).
20. S. B. Deshpande, H. S. Potdar, P. D. Godbole, and S. K. Date, " Preparation and Ferroelectric Properties of SBN:50," J. Am. Ceram. Soc., 75[9], 2581 (1992).
21. S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso," Preparation of Strontium Barium Niobate by Sol-Gel method," J. Am. Ceram. Soc., 75[6]1697-1700 (1992).
22. 李文景,博士論文,國立成功大學,1997.
23. A. A. Ballman and H. Brown, "The Growth and Property of Sr1-x BaxNb2O6, A Tungsten Bronze Ferroelectric," J. Cryst. Growth 1, 311 (1967).
24. K. Sayano, A. Yariu, and R. R. Neurgaonkar, Appl. Phys. Lett., 55, 328 (1989).
25. R. A. Vazguez, M. D. Ewbank, and R. R. Neurgaonkar, Opt. Comm., 80[3-4], 253 (1991).
26. R. A. Vazguez, F. R. Vachss, R. R. Neurgaonkar, J. Opt. Soc. Am. B 8[9], 1932 (1991).
27. C. Herring, J. Appl. Phys., 21, 301 (1950).
28. F. F. Lange,” Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67[2] 83-89 (1984).
29. M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, Mater. Sci. Eng., 60, 275-80 (1983).
30. W. H. Rhodes,” Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Am. Ceram. Soc., 64[1] 19-22 (1981).
31. E. A. Barringer and H. K. Bowen, J. Am. Ceram. Soc., 65, C-119 (1982).
32. E. A. Barringer, R. J. Brook, and H. K. Bowen, in "Materials Science Research, Vol.16, Sintering and Heterogeneous Catalysis," Edited by G. C. Kuczynski, A. E. Miller, and G. A. Sargent, Plenum Press, New York, 1984 pp.1-21.
33. Eric Liniger and Rishi Raj,” Packing and Sintering of Two- Dimensional Structures Made from Bimodal Particle Size Distributions,” J. Am. Ceram. Soc., 70[11] 843-849 (1987).
34. A. G. Evans,” Considerations of Inhomogeneity Effects in Sintering,” J. Am. Ceram. Soc., 65[10] 497-501 (1982).
35. R. Pampuch, Ceramic Materials an Introduction to Their Properties, Elsevier Scientific Publishing Company, New York, 1976 p.130-136.
36. R. L. Coble, J. Appl. Phys., 32, 787 (1961).
37. C. Greskovich and J. H. Rosolowski,” Sintering of Covalent Solids,” J. Am. Ceram. Soc., 59[7-8] 336-343 (1976).
38. D. W. Budworth, Trans, Brit. Ceram. Soc., 69, 29 (1970).
39. F. F. Lange and B. I. Davis, in " Advances in Ceramics, Vol.12, Science and Technology of Zirconua II", Edited by N. Claussen, M. Ruhle, and A. H. Heuer, Am. Ceram. Soc. Columbus, OH, 1984, pp.699-713.
40. Junhong Zhao and Martin P. Harmer,” Effect of Pore Distribution on Microstructure Development: II, First- and Second-Generation Pores,” J. Am. Ceram. Soc., 71[7]530-539 (1988).
41. T. T. Fang and H. Palmour III,” Useful Extensions of the Statistical Theory of Sintering,” Ceram. Int., 15, 329-335 (1989).
42. T. T. Fang and H. Palmour III, Ceram. Int., 16, 1 (1990).
43. T. T. Fang and H. Palmour III, Ceram. Int., 16, 63 (1990).
44. G. C. Kuczynski, pp. 325-37 in Sintering and Related Phenomena. Edited by G. C. Kuczynski, Mater. Sci. Res. Vol.10, Plenum Press, New York, 1975.
45. G. C. Kuczynski, pp. 233-245, in Ceramic Microstructure 76, Edited by R. M. Fulrath and J. A. Pask, Westview Press, Boulder, Colorado, 1977.
46. The Ph.D. Thesis of H. L. Hsieh, National Cheng Kung University, Tainan, Taiwan, R.O.C.
47. W. Jander, "Reaktionen im Festen Zustande bie Hoheren Temperaturen," Z. Anorg. Allg. Chem., (in Ger.), 163, 1-30 (1927).
48. A. M. Gistling and B. I. Brounshtein, "Concerning the Diffusion Kinetics of Reactions in Spherical Particles," J. Appl. Chem. USSR, 23, 1327 (1950).
49. G. Valensi," Cinetique de I'Oxydation de Spherules et de Poudres Matallics ", C. R. Hebd. Seances Acad. Sci., (in Fr.), 203, 309 (1936).
50. R. E. Carter," Kinetic Model for Solid-State Reactions," J. Chem. Phys., 34, 2010 (1961).
51. E. A. Cooper and T. O. Mason, "Mechanism of La2CuO4 Solid- State Powder Reaction by Quantitative XRD and Impedance Spectroscopy," J. Am. Ceram. Soc., 78[4]857-864 (1995).
52. I. Halikia and E. Milona, "Kinetic Study of the Solid State Reaction between Alpha-Al2O3 and ZnO for Zinc Ferrite Formation," Canadian Metallurgical Quarterty, 33[2], 99-109 (1994).
53. G. A. Kolta, S. Z. El-Tawil, A. A. Ibrahim and N. S. Felix, "Kinetics and mechanism of Zinc Ferrite Formation," Thermochim. Acta, 36, 359-66 (1980).
54. Donald L. Branson, "Kinetics and Mechanism of the Reaction between Zin Oxide and Aluminum Oxide," J. Am. Ceram. Soc., 48[11] 591-595 (1965).
55. A. M. M. Gadalla, "Kinetic of the Decomposition of Hydration Oxalates of Calcium and Magnesium in Air," Thermochim. Acta, 74, 255 (1984).
56. Julius Beretka, "Kinetic Analysis of Solid-State Reactions between Powdered Reactants," J. Am. Ceram. Soc., 67[9]615- 620 (1984).
57. Hiromu Sasaki, "Introduction of Particles Size Distribution into Kinetics of Solid-State Reactions ", J. Am. Ceram. Soc., 47[10] 512-516 (1964).
58. P. C. Kapur, "Kinetics of Solid-State Reactions of Particulate Ensembles with Size Distributions," J. Am. Ceram. Soc., 56[2] 79-81(1973).
59. C. H. Bamford and C. F. H. Tipper (Eds.), Comprehensive Chemical Kinetics, Vol.22, Reactions in Solid State. Elsevier Scientific Publishing Company New York, 1980.
60. Wen-Jiung Lee and Tsang-Tse Fang,” Nonisothermal Reaction Kinetics of SrNb2O6 and BaNb2O6 for the Formation of SrxBa1-xNb2O6,” J. Am. Ceram. Soc., 81 [1] 193 (1998).
61. Wen-Jiung Lee and Tsang-Tse Fang,” Effect of the Strontium: Barium Ratio and Atmosphere on the Sintering Behavior of Strontium Barium Niobate,” J. Am. Ceram. Soc., 81 [2] 300-304 (1998).
62. T. Dosdale, and R.J. Brook,” Comparison of Diffusion Data and of Activation Energies,” J.Am.Ceram.Soc.,66[6]392-395 (1983).
63. James D. Hodge, ”Comment on “Comparison of Diffusion Data and of Activation Energies,”” J.Am.Ceram.Soc.,66[11]c216- c217 (1983)
64. E. Dörre, etc., Alumina: Processing, Properties, and Applications, Springer-Verlag, Berlin, 1984.
65. R. Neimann, K. Buse, R. Pankrath, and M. Neumann,” XPS study of photorefractive Sr0.61Ba0.39Nb2O6: Ce crystals,” Solid State Commu., 98[3]209-213(1996).
66. Th. Woike, G. Weckwerth, H. Palme, and R. Pankrath, “ Instrumental Neutron Activation and Absorption Spectroscopy of Photorefractive Strontium-Barium Niobate Single Crystals Doped with Cerium,” Solid State Commu., 102[10]743-747 (1997)
67. N. C. Giles, J. L. Wolford, G. J. Edwards, and R. Uhrin, ” Optical and magnetic resonance study of impurity ions in undoped and cerium-doped Sr0.61Ba0.39Nb2O6,” J. Appl. Phys., 77 [3] 976-980 (1995).
68. M. Gao, R. Pankrath, S. Kapphan, V. Vikhnin,” Light-induced charge transfer and kinetics of the NIR absorption of Nb4+ polarons in SBN crystals at low temperature,” Appl. Phys. B, 68[5]849-858(1999).
69. Helen M. Chan, Martin P. Harmer, and Donald M. Smyth,” Compensating Defects in Highly Donor-Doped BaTiO3,” J. Am. Ceram. Soc., 69 [6] 507-510 (1986).
70. Dwight Viehland and Yun-Han Chen, J. Appl. Phys., 88[11] 6696- 6707 (2000).
71. Yu-Guo Wang, Wolfgang Kleemann, Theo Woike, and Rainer Pankrath,“ Atomic Force Microscopy of Domains and Volume Holograms in Sr0.61Ba0.39Nb2O6:Ce3+,” Phys. Rev. B, 61[5]3333- 3336(2000).
72. Dwight Viehland, Z. Xu, and Weng-Hsing Huang, “Structure-Property Relationships in Strontium Barium Niobate, I. Needle-Like Nanopolar Domains and the Metastably-Locked Incommensurate Structure,” Philosophical Magazine A, 71[2] 205-217(1995).
73. P. Lehnen, W. Kleemann, Th. Woike, and R. Pankrath, “Phase Transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. Linear Birefringence Studies of Spontaneous and Precursor Polarization,” Eur. Phys. J. B, 14,633-637(2000).
74. J. G. Bednorz and K. A. Müller, Phys. Rev. Lett., 52[25]2289- 2292(1984).
75. Jyh-Tzong Shiue and Tsang-Tse Fang,” The Charge Compensating Defect in Ceria Doped Strontium Barium Niobate by EELS and XPS,” accepted by J. Am. Ceram. Soc.
76. Jyh-Tzong Shiue and Tsang-Tse Fang,” The Sintering Behavior of CeO2-doped Strontium Barium Niobate Ceramics,” J. Euro. Ceram. Soc. 22, [9-10] 1705–1709(2002).
77. J. Wingbermühle, M. Meyer, O. F. Schirmer, R. Pankrath, and R. K. Kremer,” Electron paramagnetic resonance of Ce3+ in strontium-barium niobate,” J. Phys.: Condens. Matter, 12, 4277-4284(2000).
78. L. A. Bursill and Peng Ju Lin,” Chaotic States Observed in Strontium Barium Niobate,” Philosophical Magazine B, 54[2] 157-170(1986).
79. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata,” High- sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett., 30[12] 631-633 (1977).
80. R. J. Brook, “Controlled Grain Growth,” pp 331-364, in Treatise on Materials Science and Technology, vol. 9, edited by F. F. Y. Wang, Academic Press, New York, 1976.
81. Junichi Takahashi, Shiro Nishiwaki and Kohei Kodaira,” Sintering and Microstructure of Sr0.6Ba0.4Nb2O6 Ceramics,” pp 363-370, in Ceramic Transactions vol.41: Grain Boundary and Interfacial Phenomena in Electronic Ceramics, edited by Lionel M. Levinson and Shin-ichi Hirano, American Ceramic Society, Columbus, OH,1994.
82. Han-Young Lee and R. Freer,” The Mechanism of Abnormal Grain Growth in Sr0.6Ba0.4Nb2O6 Ceramics,” J. Appl. Phys., 81[1] 376-382(1997).
83. Han-Young Lee and R. Freer,” Abnormal Grain Growth and Liguid-Phase Sintering in Sr0.6Ba0.4Nb2O6 (SBN60) Ceramics,” J. Mater. Sci., 33, 1703-1708(1998).
84. Tsang-Tse Fang, Edin Chen and Wen-Jiung Lee, “On the Discontinuous Grain Growth of SrxBa1-xNb2O6 Ceramics,” J. Euro. Ceram. Soc., 20,527-530(2000).
85. Myoung-Sup Kim, Joon-Hyung Lee, Jeong-Joo Kim, Hee- Young Lee, and Sang-Hee Cho, “Origin of Abnormal Grain Growth in Tungsten Bronze Structured Ferroelectric SrxBa1-xNb2O6 Ceramics,” Jpn. J. Appl. Phys., 41[11B,part1] 7048-7052 (2002).