簡易檢索 / 詳目顯示

研究生: 顏良儒
Yen, Liang-Ju
論文名稱: 微型磁控系統之磁場模擬研究
Simulation Analysis of Electromagnetic Fields for Microelectromagnetic Control Systems
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 微電磁場磁奈米粒子基因轉殖晶片
外文關鍵詞: gene transfection chip, micro electromagnetic field, nano magnetic particle
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於探討利用有限元素分析軟體(ANSYS)調整相關參數以模擬微型磁力線圈之電磁場的分佈。建立的三維模型與相關實驗比較後證實,其結果的正確性可作為發展磁電式基因轉殖晶片的設計架構。
    此模型結構主要採用環型線圈設計,討論重點在於以環型線圈半徑、環型線圈寬度,環型線圈的沉積厚度及線圈開口角度等條件改變使電流所感應產生微電磁場之變化;其目的是希望能操控接合有螢光基因的磁奈米粒子而產生局部濃縮的效果,再施加短暫電場以產生細胞膜的暫時性微小孔隙,使粒子藉通道進入細胞中以增加基因轉殖率。
    在針對不同條件的設計下進行模擬後發現,所設計的微電磁場其磁場分佈主要取決於線圈半徑,並隨隔離層高度之改變,當線圈半徑越小時,可以得到較佳的電磁場分佈。而環型線圈寬度、線圈沉積厚度及線圈開口角度的變化則對電磁場影響不大。由此模擬的結果將有助於晶片設計以提高基因的轉殖率及區域性傳遞的效率。

    This thesis mainly focuses on the use of Finite Element Method analysis tool, “ANSYS”, to adjust relative parameters in order to simulate the distribution of micro electromagnetic fields. The results of this 3D model matched to that resulted from related experiments. Therefore this study suggests that this could help to develop the design structure of electromagnetic gene chips.

    The main structure of ANSYS model is a loop (or ring) type. The key factors discussed in this thesis are the radius of inner ring, the width of the ring, the thickness of the deposited film, the open angle of the ring, and so on. These parameters cause the variation of micro electromagnetic fields which are inducted by the current. The goal of this design is to use magnetic nano particles with fluorescent gene to control the effect of partial condensation meanwhile to apply a transient electrical field to create nano pores of cell membrane for the particle accessing into the cell through these channels.

    In the simulation of different structure design analysis, it showed that the variations of micro electromagnetic field distribution were affected by the radius of inner ring, and would follow the height of insulated material to change. The distribution of the electromagnetic field will be better when the radius of inner ring is smaller. The width of the ring, the thickness of the depositional film and the opening angle of the ring all result in a little effect on the electromagnetic field.

    As a result, it concludes that the simulation contributes to the design of gene chips to enhance the rate of the fluorescent gene transfection and the efficiency of the regional communications.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧及研究目的 3 第二章 理論簡介 8 2-1 電磁場理論簡介 8 2-1-1 磁場、磁通密度、磁場強度和相對導磁係數 8 2-1-2 必歐-沙瓦定律(Biot-Savart Law) 9 2-2 數值分析理論簡介 14 2-2-1 有限元素法簡介 15 第三章 有限元素分析模型 17 3-1 模型簡介及規劃 17 3-2 材料性質及單位轉換 21 3-3 邊界條件及電流負載 23 3-3-1 邊界條件 23 3-3-2 電流負載 24 3-4 有限元素模型之可靠度分析 26 3-4-1 模型尺寸對分析結果之影響 26 3-4-2 網格密度收斂性 40 3-4-3 模擬與實驗結果之比對 42 3-5 分析類型 46 第四章 結果與討論 49 4-1 線圈半徑改變對磁通密度及磁場強度分佈之影響 49 4-2 線圈寬度改變對磁通密度及磁場強度分佈之影響 58 4-3 線圈沉積厚度改變對磁通密度及磁場強度分佈之影響 61 4-4 線圈開口角度改變對磁通密度及磁場強度分佈之影響 66 4-5 輸入電流改變對磁通密度及磁場強度分佈之影響 68 4-6 隔離層之作用 70 第五章 結論與建議 71 5-1 結論 71 5-2 建議 73 參考文獻 74 自述 78

    [1] 周正中、白果能,微陣列生物晶片簡介及應用,科儀新知,第23卷,第5期,5-13頁,2002年。
    [2] 莊達人,VLSI製造技術,高立圖書,第1章,8-11頁,2003年。
    [3] A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fetting, A. Paulus, H. Ludi, and H. M. Widmer, “Planar chips technology for miniaurization and integration of separation techniques into monitoring system,” Journal of Chromatography, 593, pp. 253-258, 1992.
    [4] J. Stafford, J. Brignac, R. Gangadharan, M. Mcmahon, and J. Denman, “A proximal CCD imaging system for high-throughput detection of microarray-based assays,” IEEE Engineering in Medicine and Biology, 18, pp. 120-122, 1999.
    [5] M. Washizu, T. Yamamoto, O. Kurosawa, and N. Shimamoto, “Molecular surgery based on microsystems,” Conference on Solid-State Sensors and Actuators, Chicago, pp. 473-476, 1997.
    [6] 鍾楊聰,生物學,台灣培生教育,第3單元,第19章,390-416頁,2002年。
    [7] http://www.cropsci.uiuc.edu/classes/cpsc121/images/Biotech.htm, Crop Sciences. 2004.
    [8] D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers, “Guide to electroporation and electrofusion,” Academic Press Incorporated, New York, pp. 29-34, 1992.
    [9] U. Zimmermann, and J. Vienken, “Electric field-induced cell to cell fusion,” Journal of Membrane Biology, 67, pp. 165-182, 1982.
    [10] R. D. Jamieson, M. P. Bodger, and P. S. Bodger, “Transfection by electroporation: cell gene transfer using electrical impulses, a new process in blood cancer research,” Science, 136, pp. 41-44, 1989.
    [11] H. Lambert, R. Pankov, J. Gauthier, and R. Hancock, “Electroporation-mediated uptake of proteins into mammalian cells,” Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 68, pp. 729-734, 1990.
    [12] J. A. Lundqvist, F. Sahlin, Maria A. I. Aberg, A. Stromberg, P. S. Eriksson, and O. Orwar, “Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes,” Proceeding of the National Academy of Sciences of the United States of America, 95, pp. 10356-10360, 1998.
    [13] G. L. Prasanna, T. Panda, and P. P. Rao, “Transformation of intact cells of saccharomyces cerevisiae by square wave pulses using castellated microelectrodes,” Bioprocess Engineering, 16, pp. 265-268, 1997.
    [14] Y. Huang and B. Rubinsky, “Miro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells,” Biomedical Mirodevices, 2, pp. 145-150, 1999.
    [15] Y. C. Lin, and M. Y. Huang, “Electroporation microchips for in vitro gene transfection,” Journal of Micromechanics and Microengineering, 11, pp. 1-6, 2001.

    [16] 楊正義、陳吉峰、葉一均、陳正龍及陳家俊,金屬、半導體奈米晶體在生物檢測級分析上的應用,物理雙月刊,第23卷,第6期,667-677頁,2001年。
    [17] F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher, and C. Plank, “Magnetofection : enhancing and targeting gene delivery by magnetic force in vitro and invivo,” Gene Therapy, 9, pp. 102-109, 2002.
    [18] M. Li, Y. C. Lin, and K. C. Su, “Magnetic nanoparticles used for enhancement and targeting of gene transfection in magneto-electroporation microchips,” Journal of Material Science Forum, 505, pp. 661-666, 2006.
    [19] X. N. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, I. Nowik, Y. Koltypin, and A. Gedanken, “Annealing study of Fe2O3 nanoparticles : magnetic size effects and phase transformations,” Journal of Applied Physsics, 91, pp. 4611-4616, 2002.
    [20] 王怡鈞,電磁學,超級科技圖書,第1章,3-9頁,1988年。
    [21] 張維群,電磁學,全威圖書,第6章,265-271頁,2006年。
    [22] 鄭國揚,數值分析入門,松崗電腦圖書,第1章,1-2頁,1985年。
    [23] 王至勳,有限元素法,曉園出版社,第1章,1-2頁,1985年。

    [24] C. S. Lee, H. Lee, and R. M. Westervelt, “Microelectromagnets for the control of magnetic nanoparticles,” Applied Physics Letters, 79, pp. 3308-3310, 2001.
    [25] H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, 4, pp. 995-998, 2004.
    [26] Solid97, ANSYS9.0, ANSYS.
    [27] 劉達度,工程電磁學,臺灣東華書局,第9章,361頁,1987年。
    [28] http://www.matweb.com/search/GetKeyword.asp, Automation, 2005.
    [29] 楊龍杰,微小尺寸下的液體量測與驅動,物理雙月刊,第25卷,第3期,416-428頁,2003年。
    [30] http://www.vp-scientific.com/parylene_properties.htm, V&P, 2006.

    下載圖示 校內:2008-09-08公開
    校外:2008-09-08公開
    QR CODE