| 研究生: |
陳震宇 Chan, Jen-Yu |
|---|---|
| 論文名稱: |
鋼構架承受衝擊荷重之非線性分析 |
| 指導教授: |
邱耀正
Chiou, Yaw-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 大變形 、衝擊 |
| 外文關鍵詞: | impact, large displacement |
| 相關次數: | 點閱:50 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文應用Convected Material Frame Approach(C.M.F. Approach)並改變分析流程中的材料組成律,使之可以針對不同的材料特性求解非彈性結構的力學行為。且建構非線性結構大變形分析之模式,進而討論鋼構架承受衝擊荷重之非線性的行為。
Convected Material Frame Approach是仿照傳統的顯性有限元素法並將之改良而成。它將求解的過程離散化,先針對結構物將其化成有限個元素的集合,接著取前後分析時間點的變形差,求解桿件元素(elements)上的應力應變關係,再由此關係,利用虛功原理求解結構動力平衡方程式,並輔以顯性時間積分法(explicit time integration),以求解結構物在各歷時下的變位、速度與加速度;而在結構材料性質的處理上,由於非彈性結構之應力應變關係不再是成線性比例相關,因此桿件中因應變而產生的應力不再只是簡單地乘上一常數即可求出;相反地,兩者的關係必須代之以非線性函數來表示,同時考慮不同桿件斷面實際應力應變分佈情況加以求解之。
本文以ANSYS軟體驗證數值結果,結果顯示本文數值結果與ANSYS軟體所得之結果比較良好。
none
參考文獻
1. F. P. Beer and E. R. Johnston, Jr.,“Mechanics of Materials”, McGraw Hill, 1992.
2. T. Belytschko, and B. J. Hsieh,“Nonlinear transient finite element analysis with convected coordinates”, Int. J. Numer. Meth. Eng., 7, 255-271, 1973.
3. T. Belytschko, and A. H. Marchertas,“Nonlinear finite element method for plates and its application to dynamics response of reactor fuel subassemblies”, Trans. ASME, J. Pressure Vessel Tech., 251-257, 1974.
4. T. Belytschko, L. Schwer and M. J. Klein,“Large displacement, transient analysis of space frames”, Int. J. Numer. Meth. Eng., 11, 65-84, 1977.
5. David S. Burnett,“Finite Element Analysis”, Addison-Wesley, 1988.
6. A. Chajes,“Inelastic deflections of beams”, J. Stru. Div., ASCE, 1549-1565, June, 1968.
7. W. F. Chen,“General solution of inelastic beam-column problems”, J. Eng. Mech. Div., ASCE, 421-441, Aug., 1970.
8. W. F. Chen,“Approximate solution of beam-columns”, J. Eng. Mech. Div., ASCE, 743-751, Feb., 1971.
9. W. F. Chen,“Further studies of inelastic beam-column problems”, J. Eng. Mech. Div., ASCE, 529-543, Feb., 1971.
10. W. F. Chen and E. M. Lui,“Structural Stability-theory and implementation”, Elsevier, New York, 45-146, 1987.
11. W. F. Chen and D. J. Han,“Plasticity for Structural Engineers”, Springer-Verlag, New York, 1988.
12. John E. Goldberg and Ralph M. Richard,“Analysis of nonlinear structures”, J. Stru. Div., ASCE, 333-351, Aug., 1963.
13. T. H. Lin,“Theory of Inelastic Structures”, John Wiley & Sons, New York, 128-235, 1968.
14. W. Ramberg and W. R. Osgood,“Description of stress-strain curves by three parameters”, Technical Notes No.902, NACA, July, 1943.
15. J. N. Reddy,“An Introduction to the Finite Element Method”, McGraw-Hill, New York, 1993.
16. D. L. Rice and E. C. Ting,“Large displacement trasient analysis of flexible structures”, Int. J. Numer. Meth. Eng, 36, 1541-1562, 1993.
17. D. L. Rice and E. C. Ting,“Fragmentation algorithm for finite element failure simulation and analysis”, Int. J. Numer. Meth. Eng., 36, 3859-3881, 1994.
18. W. F. Riley and L. Zachary,“Introduction to Mechanics of Materials”, John-Wiely & Sons, New York, 1989.
19. J. O. Smith and O. M. Sidebottom,“Inelastic Behavior of Load-Carrying Members”, John Wiley & Sons, New York, 103-150, 1965.
20. S. C. Tang, K. S. Yeung and C. T. Chon,“On the tangent stiffness matrix in a convected coordinate system”, Comput. Struct., Vol. 12, 849-856, July, 1980.
21. T. Y. Yang and S. Saigal,“A simple element for static and dynamic response of beams with material and geometric nonlinearities”, Int. J. Num. Meth. Eng., Vol. 20, 851-867, 1984.
22. Yeon-Kang Wang,“A General Curved Beam Element for Very Flexible Frames”, A Thesis Submitted to the Faculty of Purdue University, August, 1996.