| 研究生: |
曾胤豪 Tseng, Yin-Hao |
|---|---|
| 論文名稱: |
應用晶格波茲曼法於管道內具擺動葉片之對流熱傳分析 Application of Lattice Boltzmann Method to Convective Heat Transfer in the channel with an Oscillating Blade |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 晶格波茲曼法 、渠道流 、對流熱傳 、擺動葉片 |
| 外文關鍵詞: | lattice Boltzmann method, channel flow, convective heat transfer, swing blade |
| 相關次數: | 點閱:102 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以晶格波茲曼法模擬擺動葉片對渠道內加熱圓柱之流場與熱傳特性的影響,並探討改變流場入口雷諾數以及不同之葉片設計參數對渠道內加熱圓柱之熱傳特性的影響。並適當的設定入口的均勻流速度,以確保流場的適用性及避免太大的壓縮效應。研究結果顯示流場受到葉片進行往複式的振盪運動牽引的效應,使管道內的流體呈現上下振盪的現象,引導流體向高溫加熱圓柱壁面衝擊,擾亂管道內的流場以及溫度場,產生較佳的熱傳增益。
流場的擾動可經由改變擺動葉片設計參數而產生強弱之分,本文考慮了五種不同的設計參數,分別是葉片擺動角度、葉片長寬比、葉片與加熱圓柱之間距離的大小以及葉片擺動頻率,最後考慮了擺動葉片在流場中不同位置其增加的流場擾動對熱傳效果的影響。結果顯示擺動角度、葉片長寬比及擺動頻率愈大,對增強對流熱傳之效果愈好,而葉片與加熱圓柱之間距離和擺動葉片在流場中不同位置的選擇應依依雷諾數與擺動葉片參數不同而選擇最佳值。
In this study, the lattice Boltzmann method is applied to simulate the effect of flow field and convection heat transfer of the heating cylinder in the channel with an oscillating blade. The effect of blade parameters and the Reynolds number of inlet flow to convective heat transfer is studied.
The inlet velocity is assigned appropriately to ensure a reasonable adaptation of fluid field and to avoid un-physical compressible effect. The results of numerical simulation demonstrate that the oscillating blade induces a force oscillation to the flow and thermal fields in the channel flow, such that the heat transfer rate could be enhanced for the heating cylinder.
Five blade design parameters with respect to heating cylinder is considered, namely, the swing angle, the blade aspect ratio, the distance and relative location to heating cylinder and operation frequency. Results show that a larger swing angle, blade aspect ratio and swing frequency will lead to a better the enhancement of convective heat transfer. However, a good choice of distance and location of the blade can only be determined according to the inlet flow Reynolds number and the selected blade parameters.
Alexander, F. J., & Chen, S., & Stering, J. D., 1993, “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252.
Bhatnagar, P. L., & Gross, E. P., & Krook, M., 1954, “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525.
Bouzidi, M., & Firdaouss, M., & Lallemand, P. J., 2001, “Momentum transfer of a Boltzmann-lattice fluid with boundaries”, Phys. Fluids, Vol. 13(11), pp. 3452-3459.
Chen, Shiyi, & Martinez, Daniel, 1996, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536.
Chen, Shiyi, & Doolen, Gary D., 1998, “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364.
Chen, C. K., & Chang, S. C., & Sun, S. Y., 2007, “Lattice Boltzmann Method Simulation of Channel Flow with Square Pillars inside by the Field Synergy Principle”, CMES, vol.22(3), pp.203-215.
Chang, S. C., & Hsu, Y. S., & Chen, C. L., 2011, “Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm”, J. CSME, Vol. 32(6), pp.523~531.
Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, 1993, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp.2557-2562.
Guo, Zhaoli, & Zhao, T. S., 2002, “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304.
Higuera, F. J., & Jimenez, J., 1989, “Boltzmann approach to lattice gas simulations”,Europhys. Lett., Vol. 9(7), pp. 663-668.
Higuera, F. J., & Succi, S., & Benzi, R., 1989, “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349.
He, Xiaoyi, & Luo, Li-Shi, 1997, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944.
He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., 1998, “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol.146, pp. 282-300.
Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, 1995, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12),pp. 2928-2930.
Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., 2002, “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids,Vol. 14(7), pp. 2299-2308.
Lallemand, P., & Luo, L. S., 2003, “Lattice Boltzmann method for moving boundaries”, J. Comput. Phys., Vol.184, pp. 406-421.
McNamara, Guy R., & Zanetti, Gianluigi, 1988, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20),pp. 2332-2335.
Mettu, S., & Verma, N., & R. P., Chhabra, 2006, “Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel”, Heat Mass Transfer, Vol. 42,pp. 1037-1048.
Maier, R.S., & Bernard R.S., & Grunau, D.W., 1996, “Boundary conditions for the lattice Boltzmann method,” Phys. Fluids, Vol. 8, 1788-1801.
Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., 1995, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”,Phys. Fluids, Vol. 7(1), pp. 203-209.
Peng, Y., & Shu, C., & Chew Y. T., 2003, “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp.026701.
Qian, Y. H., & d’Humieres, D., & Lallemand, P.,1992, “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484.
Shan, Xiaowen, 1997, “Simulation of Rayleigh-Benard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788.
Succi, S., & Vergassola, M., & Benzi, R. , 2001, “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524.
Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat.Phys., Vol. 71, pp. 1171-1177, 1993.
Zou, Qisu, & He, Xiaoyi, 1997, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp.1591-1598.
何雅玲,王勇,李慶,“格子Boltzmann方法的理論及應用”,科學出版社,2011
郭照立,鄭楚光,“格子Boltzmann方法的原理及應用”,科學出版社,2010