簡易檢索 / 詳目顯示

研究生: 李瑋志
Lee, Wei-Chih
論文名稱: (Bi0.5Na0.5)TiO3無鉛壓電陶瓷系統之結構與介電性質之關聯性
Structure-dielectric properties relations in (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 151
中文關鍵詞: 壓電材料無鉛晶體結構介電性質
外文關鍵詞: crystal structure, Piezoelectric material, lead-free, dielectric proerties
相關次數: 點閱:77下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國際環保意識的提高,許多對環境以及人體有害之物質已逐步被禁用。因此本研究針對無鉛壓電陶瓷中被認為有機會取代部分 hard-Pb(Zr,Ti)O3於致動器等應用上的 (Bi0.5Na0.5)TiO3 (BNT) 固溶系統作為研究之主軸,並分別針對影響性質表現之外在因素 (extrinsic factor) 以及本質因素 (intrinsic factor) 進行了深入之研究探討,以了解材料之晶體結構-微結構-介電/壓電/鐵電性質之關聯性。
    首先,針對外在因素的探討中,本研究著重於探討微結構-介電/壓電/鐵電性質之關聯性,並利用調整製程參數以製作出具有不同晶粒大小之緻密陶瓷體,其平均晶粒大小範圍由 1.81 um到 0.28 um。並且由 TEM以及鐵電性質之量測結果發現其晶域轉向 (domain switching) 能力將隨著晶粒大小的縮減而降低,並且當晶粒尺寸縮小至 0.8 um以下將顯著的抑制其介電/壓電/鐵電性質之表現。
    而在本質因素的探討中,本研究則致力於建立晶體結構-介電/壓電/鐵電性質之關聯性。主要得到之結果有三點,第一,藉由 Rietveld method進行之晶體結構精算可得不同成份之離子在結構中的偏移量以及其晶格常數,並發現添加所導致之相變是由於結構中正負電中心距離的上升 (dc-a) 所導致,並且,整個材料系統之鐵電性質表現則與晶體結構之正負電中心距離、晶格常數、及組成相比例有關。第二,藉由資料蒐集整理以及 t (容忍因子) 之計算結果建立了以 BNT為固溶系統主體之陶瓷材料其 MPB組成 (Morphotropic Phase Boundary, 形變相界) 與 t值之關聯性,並依據此結果設計了兩套材料系統以證明此結果之正確性。第三,藉由比較多個 MPB組成後發現,介電以及壓電性質 (e33T/e0, d33) 之變化與其晶格體積 (cell volume, V) 有正向之關係。
    此外,本論文亦利用上述所建立之晶體結構-微結構-介電/壓電/鐵電性質關聯性進行綜合討論,以找出未來開發此類材料之依據。

    Lead-based Pb(Zr,Ti)O3 (PZT) piezoelectric ceramics with perovskite structure are widely used as actuators, sensors and micro-electro-mechanical devices owing to their superior dielectric properties. However, toxic lead oxide may evaporate during the heating process due to their high vapor pressure which is risky to human health. Therefore, to develop new environment-friendly materials to replace PZT-based materials has become one of the most attractive topics. In this study, (Bi0.5Na0.5)TiO3 (BNT) lead-free solid solution system was choosen as studied material to investigate the extrinsic and intrincis factors on dielectric/piezoelectric/ferroelectric properties and find out the relation between crystal structure-microstructure-dielectric properties.
    For extrinsic factor, this study focuses on the microstructure-dielectric properties relation via fabricating dense ceramics with different grain size. The averge grain size of dense ceramics is from 0.28 to 1.81 um. The results show that their dielectric properties performance goes down while grain size decreases, and that is due to their domain switching ability decreases as grain size decreases. This phenomenon significantly affects its properties while the grain size of ceramic is below 0.8 um.
    For intrinsic factors, this study focuses on establishing the crystal structure-dielectric properties relation. There are three main results. First, the displacement of ions and lattice constant can be calculated via Rietveld method. According to the results, we find the phase transformation is caused from the increase in the distance between cations and anions (dc-a) and the variation in ferroelectric properties is related to dc-a, lattice constant, and the fraction of composed phases. Second, the relation between MPB (Morphotropic Phase Boundary) composition and tolerance factor has been found in this study and two material systems were designed to prove it. Third, by comparing some different MPB compositions, the variation in dielectric/piezoelectric constant is found to proportional to cell volume.
    Finally, a comprehensive discussion between crystal structure, microstructure, and dielectric/ piezoelectric/ferroelectric properties was made in this study to find out some evidences for developing new lead-free dielectric/ piezoelectric/ferroelectric ceramics.

    摘要 I Abstrate III 致謝 V 圖目錄 X 表目錄 XV 第一章 序論 1 1-1 研究背景 1 1-2 研究方法 2 第二章 前人研究及理論基礎 3 2-1 介電陶瓷 3 2-1-1 介電特性 3 2-1-2 介電性質參數 7 2-2 壓電陶瓷 10 2-2-1 壓電性質之根源 11 2-2-2 壓電性質參數 13 2-2-3 鐵電遲滯曲線 14 2-3-1 含鉛壓電陶瓷材料 18 2-3-2 無鉛壓電陶瓷材料 18 2-3-3 Bi0.5Na0.5TiO3之晶體結構以及鐵電、壓電性質 21 2-4 弛緩體之形成及相變機制 25 2-5 形變相界與晶域之關係 26 2-6 鈣鈦礦結構之容忍因子 29 2-7 壓電陶瓷之晶粒效應 33 2-8 添加物對於壓電性質之影響 36 第三章 實驗方法及步驟 42 3-1 起始原料 42 3-2 粉末及陶瓷體製備 42 3-2-1 粉末製備 42 3-2-2 粉末之熱差/熱重分析 45 3-2-3 陶瓷體製備及燒結條件試驗 45 3-3 材料特性分析 46 3-3-1 陶瓷體密度量測 46 3-3-2 晶格常數計算 46 3-3-3 Rietveld method 精算 48 3-3-4 掃描式電子顯微鏡 52 3-3-5 穿透式電子顯微鏡 53 3-3-6 晶粒大小與分佈計算 53 3-4 材料性質分析 54 3-4-1 陶瓷體電性質量測樣品準備 54 3-4-2 室溫介電常數與介電損失量測 54 3-4-3 相轉換溫度量測 54 3-4-4鐵電滯迴曲線量測 55 3-4-5 極化 55 3-4-6 壓電常數量測 55 3-4-7 機電耦合因數量測 55 第四章 晶粒大小對於無鉛壓電陶瓷 (Bi0.5Na0.5)TiO3-BaTiO3之結構以及介電性質的影響 57 4-1前言 57 4-2 結果與討論 58 4-2-1 粉末合成及燒結體製備 58 4-2-2 微結構觀察 63 4-2-3 晶粒大小對於晶體結構之影響 74 4-2-3 晶粒大小對於介電/壓電/鐵電之影響 77 4-3 結果與討論 84 第五章 (Bi0.5Na0.5)TiO3-Ba(Zr0.05Ti0.95)O3陶瓷系統之晶體結構與鐵電性質之關聯性 85 5-1前言 85 5-2 結果與討論 85 5-2-1 X光繞射分析 85 5-2-2 Rietveld method晶體結構分析 88 5-2-3 成份造成結構之變化 94 5-2-4 鐵電性質分析 96 5-3 結論 102 第六章 (Bi0.5Na0.5)TiO3陶瓷系統之形變相界組成、化學成份及容忍因子之關聯性 103 6-1前言 103 6-2 (Bi0.5Na0.5)TiO3固溶系統中形變相界與容忍因子之關係 103 6-3 結果與討論 111 6-3-1 微結構觀察 111 6-3-2 晶體結構分析 112 6-3-3 介電以及壓電性質量測結果 117 6-4 結論 120 第七章 (Bi0.5Na0.5)TiO3-(Ba,Sr)TiO3陶瓷系統之微結構、晶體結構與介電性質之關係 121 7-1前言 121 7-2 結果與討論 121 7-2-1 微結構觀察以及晶體結構分析 121 7-2-2 鐵電性質分析 124 7-2-3 介電性質分析 130 7-2-4 Sr2+添加之影響 132 7-2-5 晶體結構與介電/壓電常數之關聯性 136 7-3 結論 139 第八章 (Bi0.5Na0.5)TiO3壓電陶瓷系統之開發方法 140 8-1 尋求形變相界組成之方法 140 8-2 相變溫度 142 8-3 成份選擇以及性質提升之方法 143 8-4 微結構對性質之影響 144 參考文獻 146

    1. C. Klein and C. S. Hurlbut Jr., Manual of mineralogy, 21st Ed., John Wiley and Sons, Inc., New York, 1993.
    2. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 1976.
    3. C. Kittel, Introduction to solid sate physics, 7th Ed., John Wiley and Sons, Inc., New York, 1996.
    4. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, Inc., New York, 2003.
    5. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics, Academic Press Limited, Ohio, 1971.
    6. D. Berlincount and H. H. A. Krueger., “Domain processes in lead titanate zirconate and barium titanate ceramics,” J. Appl. Phys., 30 [11], 1804-10, 1959.
    7. 吳朗,電子陶瓷-介電,全欣科技圖書,1994。
    8. C. A. Randall, R. Eitel, T. R. Shrout, D. I. Woodward, and I. M. Reaney, “Investigation of a high Tc piezoelectric system: (1-x)Bi(Mg1/2Ti1/2)O3-(x)PbTiO3,” J. Appl. Phys., 95 [7], 3633-39, 2004.
    9. S. M. Choi, C. J. Stringer, T. R. Shrout, and C. A. Randall, “Structure and property investigation of a Bi-Based perovskite solid solution: (1-x)Bi(Ni1/2Ti1/2)O3-(x)PbTiO3,” J. Appl. Phys., 98, 034108, 2005.
    10. C. J. Stringer, R. E. Eitek, T. R. Shrout, C. A. Randall, and I. M. Reaney, “Phase transition and chemical order in the ferroelectric perovskite (1-x) Bi(Mg3/4W1/4)O3-(x)PbTiO3 solid solution,” J. Appl. Phys., 97, 024101, 2005.
    11. M. Kimura, A. Ando, T. Sawada, and K. Hayashi, U.S. Patent 6258291, Jul. 10, 2001.
    12. M. Kimura, T. Ogawa, and A. Ando, U.S. Patent 6093339, Jul. 25, 2000.
    13. 小川弘純、木村雅彥、山口達也、安藤陽,Murata Manufacturing Co., LTD.,中華民國專利 I262512,2006.
    14. 塚田岳夫、東智久、賴廣正和,TDK Co., LTD.,中華民國專利 I261051,2006.
    15. 塚田岳夫、東智久、賴廣正和,TDK Co., LTD.,中華民國專利 I261051,2006.
    16. 塚田岳夫、東智久、賴廣正和、剛均,TDK Co., LTD.,中華民國專利 200524191,2005.
    17. 澤田拓也、木村雅彥、安藤陽、林宏一,Murata Manufacturing Co., LTD.,中華民國專利469447,2001.
    18. A.S. Bhalla, R. Guo, and R. Roy, “The perovskite structure – a review of its role in ceramic science and technology,” Mater. Res. Innovat., 4, 3-26, 2000.
    19. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoelectric,” Nature., 432, 84-87, 2004.
    20. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, “New ferroelectrics of complex composition,” Sov. Phys.-Solid State, 2 [11], 2651-2654, 1961.
    21. J. Suchanicz, “Axial pressure effect on a phase transition nature and ferroelectric properties of single crystal Na0.5Bi0.5TiO3,” J. Phys. Chem. Solids, 62, 1271-1276, 2001.
    22. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3,” Acta Cryst., B58, 168-178, 2002.
    23. Y. Hiruma, H. Nagata, and T. Takenaka, “Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., 45, 9B, 7409-7412, 2006.
    24. G. A. Smolenskii and A. I. Agranovskaya, “Dielectric polarization of a number of complex compounds,” Sov. Phys., Solid State (Engl.Transl.), 1[10], 1429-1437, 1960.
    25. V. A .Bokov, and I. E. Mylnikova, “Electrical and optical properties of single crystals of ferroelectrics with a diffuse phase transition,” Sov. Phys., Solid State (Engl.Transl.), 3, 3, 613-623, 1961.
    26. N. Setter, and L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15, 2478-2482, 1980.
    27. N. Setter, and L. E. Cross, “The role of B-site cation disorder in Diffusion phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., 51[8], 4356-60, 1980.
    28. S.B. Vakhrushev, V. A. Isupov, B. E. Kvyakovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky, and P. P. Syrnikov. “Phase transition and soft mode in sodium bismuth titanate,” Ferroelectrics, 63, 153-160., 1985.
    29. S. M. Pilgrim, A. E. Sutherland, and S. R. Winzer, “Diffuseness as a useful parameter for relaxor ceramics,” J. Am. Soc., 73 [10], 3122-25, 1990.
    30. O. Muller and R. Roy, The Major Ternary Structural Families, Springer-Verlag, Berlin, 1974.
    31. A. M. Glazer, “The classification of tilted octahedral in perovskite,” Acta Cryst.,B28, 3384-92, 1972.
    32. A. M. Glazer, “Simple ways of determining perovskite structure,” Acta Cryst., A31, 756-62, 1975.
    33. E. L. Colla, I. M. Reaney, and N. Setter, “Effect of structure changes in complex perovskite on the temperature coefficient of the relative permittuvuty,” J. Appl. Phys., 74 [5], 3414-25, 1993.
    34. I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and structure characterisitics of Ba- and Sr-based complex perovskite as a function of tolerance factor,” Jpn. J. Appl. Phys., 33, 3984-3990, 1994.
    35. P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannel, “Structure-microwave property relations of Ca and Sr titanates,” J. Euro. Ceram. Soc., 21, 2629-32, 2001.
    36. R. E. Eitel, C. A. Randall, T. R. Shrout, and P. W. Rehrig, “New high temperature Morphotropic phase boundary piezoelectric based on Bi(Me)O3-PbTiO3 ceramics,” Jpn. J. Appl. Phys., 40, 5999-6002, 2001.
    37. M. R. Suchomel and P. K. Davies, “Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi(B’B’’)O3 based dielectric ceramics,” J. Appl. Phys., 96 [8], 4405-10, 2004.
    38. Y. Yamashita, Y. Hosono, K. Harada, and N. Ichinose, “Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials,” Jpn. J. Appl. Phys., 39, 5593-96, 2000.
    39. H. Yan, D. Xiao, P. Yu, J. Zhu, D. Lin, and G. Li, “The dependence of the piezoelectric properties on the difference of the A-site and B-site ions for (Bi1-xNax)TiO3-based ceramics,” Material and design, 26 [5], 474-478, 2005.
    40. G. Arlt, D. Hennings, and G. de. With “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., 58 [4], 1619-25, 1985.
    41. M. H. Frey, Z. Xu, P. Han, and D. A. Payne, “The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics,” Ferrolectrics, 206-207, 337-353, 1998.
    42. C. A. Randall, N. Kim, J. P. Jucera, W. Cao, and T. R. Shrout, “Intrinsic and extrinsic size effects in fine-grained morphotropic-phase boundary lead zirconate titanate ceramics,” J. Am. Ceram. Soc., 81 [3], 677-55, 1998.
    43. M. Takahashi, “Space charge effect in lead zirconate titanate ceramics caused by addition of impurities,” Jpn. J. Appl. Phys, 9 [10], 1236-46, 1970.
    44. C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. Thesis, The Pennsylvania State University, U. S. A., 1990.
    45. Cullity, B. D. & Stock, S. R., Elements of X-ray Diffraction 3rd edition, Prentice-Hall Inc., New Jersey, 2001.
    46. H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystal., 22, 151, 1967.
    47. A. C. Larson and R. B. Von Dreele, Los Alamos Laboratory Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, 1994.
    48. J. S. Reed, Principles of ceramics processing, 2nd Ed., John Wiley and Sons, Inc., New York, 1995.
    49. V. Dorect and G. Trolliard, “A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3,” Acta Mate., 56, 1753-1761, 2008.
    50. D. I. Woodward, I. M. Reaney, G. Y. Yang, E. C. Dickey, and C. A. Randall, “Vacancy ordering in reduced barium titanate,” Appl. Phys. Lett., 84 [23] 4650-4652, 2004.
    51. G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D. E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, “Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II- insulation resistance degradation under applied dc bias,” J. Appl. Phys., 96 [12], 7500-7508, 2004.
    52. J. Konig, M. Spreitzer, B. Hancar, D. Suvorov, Z. Samardziji, and A. Popovic, “The Thermal Decomposition of K0.5Bi0.5TiO3 Ceramics,” J. Eur. Ceram. Soc., 29, 1695-1701 (2009)
    53. T. Yamamoto, “Ferroelectric Properties of the PbZrO3-PbTiO3 system,” Jpn. J. Appl. Phys., 35, 5104-5108, 1996.
    54. D. L. Corker, A. M. Glazer, R. W. Whatmore, A. Stallard, and F. Rauth, “A Neutron Diffraction Investigation into Rhombohedral Phases of the Perovskite Series PbZr1-xTixO3,” J. Phys: Condens. Matt., 10, 6251-69, 1998.
    55. K. Uchino, Ferroelectric Devices, Marcel Dekker Inc., New York. 2000.
    56. T. Takenaka and H. Nagata, “Current Status and Prospects of Lead-Free Piezoelectric Ceramics,” J. Eur. Ceram. Soc., 25, 2693-70, 2005.
    57. A. W. Hewat, “Structure of rhombohedral ferroelectric BaTiO3,” Ferroelectric, 6, 215-218, 1974.
    58. C. Peng, J. F. Li, and W. Gong, “Preparation and Properties of (Bi1/2Na1/2)TiO3-Ba(Ti,Zr)O3 Lead-Free Piezoelectric Ceramics,” Mat. Lett., 59, 1576-80, 2005.
    59. J. Shieh, K. C. Wu, and C. S. Chen, “Switching Characteristics of MPB Compositions (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3 Lead-Free Ferroelectric Ceramics,” Acta Mater., 55 [9], 3081-3087, 2007.
    60. T. Takenaka, K. Sakata, and K. Toda “Piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics,” Ferroelectric, 106, 375-380, 1990.
    61. N. Ichinose and K. Udagawa, “Piezoelectric properties of (Bi1/2Na1/2)TiO3 based ceramics,” Ferroelectric, 169, 317-325, 1995.
    62. A. Herabut amd A. Safari, “Processing and electromechanical properties of (Bi1/2Na1/2)(1-1.5x)LaxTiO3,” J. Am. Ceram. Soc., 80 [11], 2954-58, 1997.
    63. T. Takenaka and H. Nagata, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3‧Sc2O3) system,” Jpn. J. Appl. Phys. I, 36 [9B], 6055-6057, 1997.
    64. H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi, and T. Takenaka, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3-BiFeO3 system,” Ferroelectrics, 229 [1-4], 273-278, 1999.
    65. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, “Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO 3 system,” Jpn. J. Appl. Phys., 38, 5546-5567, 1999.
    66. T. Wada, K. Toyoike, Y. Imanaka, and Y. Matsuo, “Dielectric and piezoelectric properties of (A(0.5)Bi(0.5))TiO3-ANbO(3) (A = Na, K) systems,” Jpn. J. Appl. Phys. I, 40 [9B], 5703-5705, 2001.
    67. B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, “Electric properties of (Bi1/2Na1/2)TiO3-BaTiO3ceramics,” J. Euro. Ceram. Soc., 22, 2115-2121, 2002.
    68. X. Wang, H. Chan, and C. L. Choy, “(Bi1/2Na1/2)TiO3-Ba(Cu1/2W1/2)O3 Lead free piezoelectric ceramics,” J. Am. Ceram. Soc., 86 [10] 1809-11, 2003.
    69. Y. Lin, S. Zhao, N. Cai, J. Wu, X. Zhou, and C. W. Nan, “Effects of doping Eu2O3 on the phase transformation and piezoelectric properties of (Bi0.5Na0.5)TiO3-based ceramics,” Materials Science and Engineering B., 99, 449-452, 2003.
    70. X. Wang, H. Chan, and C. L. Choy, “Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics,” Solid State Commun., 125, 395-399, 2003.
    71. H. D. Li, C. D. Feng, and P. H. Xiang, “Electric properties of La3+-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics,” Jpn. J. Appl. Phys., 42, 7387-91, 2003.
    72. Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, and R. Xu, “Dielectric and Piezoelectric Properties of Lead-Free (Bi0.5Na0.5)TiO3-NaTiO3 Ceramics,” Materials Science and Engineering B., 112, 5-9, 2004.
    73. H. D. Li, C. D. Feng, and W. L. Yao, “Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic phase boundary composition,” Mat. Lett., 58, 1194-1198, 2004.
    74. Y. Li, W. Chen, Q. Xu, J. Zhou, and X. Gu, “Piezoelectric and ferroelectric properties of Bi0.5Na0.5TiO3-K0.5Na0.5TiO3-BaTiO3,” Mat. Lett., 58, 1194-1198, 2004.
    75. X. X. Wang, X. G. Tang, and H. L. W. Chan, “Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics,” Appl. Phys. Lett., 85 [1], 91-93, 2004.
    76. W. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, and S. Fang, “Electromechanical and dielectric properties of Bi0.5Na0.5TiO3- Bi0.5K0.5TiO3-BaTiO3 lead-free ceramics,” Mater. Chem. Phys.,94, 328-332, 2005.
    77. D. Lin, D. Xiao, J. Zhu, and P. Yu, “Electrical properties of [Bi1-z(Na1-x-y-zKzLiy)]0.5ZazTiO3 multi-component lead-free piezoelectric,” Phys. Stat. Sol. A, 202 [9], R89-91, 2005.
    78. C. Zhou and X. Liu, “Dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution of Bi1/2Na1/2TiO3-Bi(Mg2/3Nb1/3)O3,” J. Mater. Sci., 43, 1016-1019, 2008.
    79. C. Zhou and X. Liu, “Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3-BaNb2O6 lead-free piezoelectric ceramics,” J. Mater. Sci: Mater Electron., 19, 29-32, 2008.
    80. K. Sakata, T. Takenaka, and Y. Naitou, “Phase relations, dielectric and piezoelectric properties of ceramics in the system (Bi1/2Na1/2)TiO3-PbTiO3,” Ferroelectrics, 131, 219-226, 1992.
    81. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A, 32, 751-767, 1976.
    82. 曾敏惠,1-x(Bi0.5Na0.5)TiO3-xBa(Zn1/3Nb2/3)O3系統之合成、晶體結構、及介電性質,國立成功大學資源工程研究所碩士論文,2009。
    83. B. L. Cheng, B. Su, J. E. Holmes, T. W. Button, M. Gabbay, and G. Fantozzi, “Dielectric and mechanical losses in (Ba,Sr)TiO3 system,” J. Electroceram., 9, 17-23, 2002.
    84. H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, “Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary,” Jpn. J. Appl. Phys., 42, 7401-7403, 2003.
    85. K. H. Cho, H. Y. Park, C. W. Ahn, and S. Nahm, “Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05SrTiO3 ceramics,” J. Am. Ceram. Soc., 90 [6], 1946-1949, 2007.
    86. Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, “Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics,” J. Appl. Phys., 92 [3], 1489-1493, 2002.
    87. S. M. Neirman, “The curie point temperature of Ba(Ti1-xZrx)O3 solid solution,” J. Mater. Sci., 23, 3973-3980, 1998.
    88. I. Grinberg, M. R. Suchomel, P. K. Davies, and A. M. Rappe, “Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi- based perovskite solid solutions from crystal chemical data and first-principles calculation,” J. Appl. Phys., 98, 094111, 2005.
    89. 高育儒,0.94(Bi0.5-xLaxNa0.5)TiO3-0.06BaTiO3系統之合成、特性、介電及壓電性質,國立成功大學資源工程學系專題研究報告,2005。

    下載圖示 校內:立即公開
    校外:2009-08-05公開
    QR CODE