| 研究生: |
李玉成 Lee, Yu-Cheng |
|---|---|
| 論文名稱: |
多原子分子氣體穩態三震波匯流現象之多重解理論分析:SF6 A Theoretical Analysis of Multiple Solutions of Steady Three-Shock Confluences in Polyatomic Gases:SF6 |
| 指導教授: |
劉中堅
Liu, Jong-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 三震波匯流現象 、馬赫波角 、前後分界 、機械平衡 |
| 外文關鍵詞: | Mechanical equilibrium, Forward and Backward facing, Mach angle, Wuest limit |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討多原子分子理想氣體 (r=1.093) 之穩態三震波匯流現象的多重解分析暨其在分辨不同解域之多重解的臨界條件下特殊解公式的理論分析。本論文的主要依據是由穩態三震波匯流場運動方程式所推導出單一的十階多項式控制方程式。特殊解公式的推導主要應用分離流兩側壓力與轉折角相等的條件。本文首先應用此十階多項式方程式對不同之入射震波上游流場馬赫數作其壓力/轉折角震波極圖解分析,有系統的探討說明具有不同數目物理意義解 (m值) 的特性。隨後我們在平面上對此r=1.093的多原子分子理想氣體的穩態三震波匯流現象建構與其各不同 值的解域,並說明其間數學與物理上的涵意。此外,我們並以上述十階多項式方程式的結果驗證了穩態馬赫反射流場傳統三震波理論計算結果的正確性。
1.Neumann, J. von Refraction, interaction and reflection of shock waves. NAVORD Rep. 203-45. Navy Dept, Bureau of Ordinance, WASHINGTON, DC, 1945.
2.Griffith W.C “Shock Waves”, J. Fluid Mech. 213: 71-94, 1981.
3.Eggin, H. Uber Verdichtungatosse. Beiabgeloster Stromung. Zentralstelle Wissenschaftliche Berichte(Z.W.B.)1850, Aachen, 1943.
4.Wuest, W. Zur Theorie des gegabelten Verdichtungatosse. Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, No. 3, p. 73, 1948.
5.Wecken, F. Grenzlagen gegabelten Verdichtungatosse. Zeitschrift fur Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 29, No. 5, p. 147, 1949.
6.Henderson, L. F. On the Confluence of Three Shock Waves in a Perfect Gas. Aeronautical Quarterly, Vol. XV , p. 181, May 1964.
7.Henderson, L. F. “The There-Shock Confluence on a Simple Wedge Intake”. Aeronautical Quarterly, Vol. 16, 42-54, January 1965.
8.Henderson, L. F. “Regions and boundaries for diffracting shock wave systems”. Z. Angew. Math. Mech. 67, 1-14, 1987.
9.Henderson, L. F. and Lozzi, A. “Experiments on Transition of Mach Reflection.” J. Fluid Mech. Vol. 68, 139-155,1975.
10.Hornung hg “Regular and Mach reflection of shock wave”. Ann. Rev. Fluid Mech. 18:33-58, 1986.
11.Ben-Dor, G. “Reconsideration of Oblique Shock Wave Reflections in Steady Flows. Part 1. Experimental Investigation” J. Fluid Mech. , Vol. 301, 19-35,1995.
12.A.N. Kudryavtsev, D.V. Khotyanovsky, M.S. Ivanov, A. Hadjadj, D. Vandromme, “Numerical Investigations of Transition between Regular and Mach Reflections Caused by Free-Stream Disturbances” Shock Waves, 157-165, 2002.
13.M.S. Ivanov, D. Vandromme, V.M. Fomin, A.N. Kudryavtsev, A. Hadjadj, D.V. Khotyanovsky, “Transition between Regular and Mach Reflection of Shock Waves: New Numerical and Experimental Results” Shock Waves, 199-207, 2001.
14.Liu J.J. “Analytical Predictions of Pseudo-steady Mach Reflections” 21st International Symposium on Shock Waves, Great Keppel Island, Australia, pp. 831-835, 1997.
15.Liu J.J. “Analytical Predictions of Strong Pseudo-steady Mach Reflections for the Polyatomic Gas: SF6” The Chinese Journal of Mechanics, Vol. 17, No. 1, pp. 1-11, March 2001.
16.Liu J.J., Chuang, C.C. and Chuang, H.W. “Multiple Solutions of Steady Mach Reflections of Monatomic Gases” The 26th National Conference on Mechanics, Hu-Wei, 2002.
17.Liu J.J., Chuang, C.C. and Lee, Y.C. “On the Multiplicity of the Solutions of the Confluence of Three Shock Waves” The 26th National Conference on Mechanics, Hu-Wei, 2002.
18.Mach, E. Uber den Verlauf von Funkenwellen in der Ebene und im Raume.Sitzumgsber. Akad. Wiss. Wien. 78, 819-838, 1878.
19.Mathematica,Wolfram Research Asia Ltd. Oak Ochanomizu Building 5F 3-8 Kanda Ogawa-machi Chiyoda-ku, Tokyo 101-0052 JAPAN, 1999.
20.莊俊忠,「馬赫反射現象之理論探討」,國立成功大學工程科學系碩士論文,台南(2002)