簡易檢索 / 詳目顯示

研究生: 曾冠彰
Zeng, Guan-Zhang
論文名稱: 利用渾沌電滲流進行矩形微混合器之最佳設計
Optimal Design of Rectangular Micromixers Using Chaotic Electroosmotic Flow
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 98
中文關鍵詞: 微流體電滲流微混合器混沌Lyapunov指數
外文關鍵詞: Microfluid, Electroosmotic flow, Micromixer, Chaos, Lyapunov exponent
相關次數: 點閱:142下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用渾沌電滲流進行矩形微混合器的設計理念是透過調整微流道管壁內電極片的電壓來驅使相鄰電雙層內的流體流動,進而產生不同型態的全流體電滲流,然後透過兩種不同流動型態的週期性切換,來生成渾沌流,以提升矩形區域內微粒子的混合效率。
    本論文以Lyapunov指數來量化流體流動的渾沌現象,Lyapunov指數正值是渾沌現象的必要條件,Lyapunov指數越大則流體的渾沌運動越強烈,也越快造成粒子混合。另外,矩形區域內渾沌流佔有的比例,是影響最終粒子混合效率的主要因素。
    本論文分析混合度的方式是計算粒子占有混合器矩形面積的比率,稱為佔有率。使用一階時延模型來擬合不同時間的粒子佔有率,可輕易獲得混合器的最終佔有率以及佔有率的動態特性。接著計算混合器達到50%佔有率所需時間作為混合效率的量化值,混合器達到50%混合度所需時間越小,混合效率就越高。
    混合器的最佳設計是通過改變混合器的長寬比、切換週期、側邊流速、邊界分離點,然後最小化各種組合的50%佔有率所需時間來實現。模擬研究指出,切換週期的增加對混合效率是有利的,但是週期太大反而會降低混合效率。長方型混合器會比正方型混合器需要更大切換週期來達到良好混合效率。側邊流速無益於正方型混合器,但少量的側邊流速可略微增加長方形混合器的混合效率。對於邊界分離點來說,分離點偏離中心點會造成非對稱的流動型態,這對混合效率有相當幫助。

    In the design of rectangular micromixers using chaotic electroosmotic flow, the voltages of the electrodes in the microchannel wall are adjusted to drive the fluid flow within the adjacent electric double layer, thus producing electroosmotic bulk flow of various patterns. Through periodic switching between two different flow patterns, chaotic flow can be generated to improve the mixing efficiency of microparticles in a rectangular area.
    In this thesis, the Lyapunov exponent is used to quantify the chaotic phenomenon of fluid flow. The positive value of the Lyapunov exponent is a necessary condition for chaotic phenomenon. The larger the Lyapunov exponent, the stronger the chaotic motion of the fluid and the faster the particles mixing. In addition, the proportion of chaotic flow in the rectangular area is the main factor that affects the final particle mixing efficiency.
    In this thesis, the degree of mixing is analyzed by calculating the ratio of particles occupying the rectangular area of the mixer, known as the occupancy ratio. The final occupancy ratio and the dynamic characteristics of the occupancy ratio can be calculated by using a first order plus dead time model to fit the occupancy ratio over time. Next, calculate the time required for the mixer to reach 50% occupancy ratio as a quantitative measure of mixing efficiency. The shorter the time required for the mixer to reach 50% mixing degree, the higher the mixing efficiency.
    The optimal mixer design is achieved by changing the aspect ratio, switching period, lateral flow rate, boundary separation point of the mixer, and then minimizing the time required for 50% occupancy ratio of various combinations. The simulation results show that the increase of the switching period is beneficial to the mixing efficiency, but when the switching period is too large, it will reduce the mixing efficiency. Rectangular mixers require longer switching periods than square mixers to achieve good mixing efficiency. The lateral flow rate is not good for the square mixer, but a small amount of the lateral flow rate can slightly increase the mixing efficiency of the rectangular mixer. For the boundary separation point, the deviation of the separation point from the center point will result in an asymmetric flow pattern, which is quite helpful for the mixing efficiency.

    摘要 i Optimal Design of Rectangular Micromixers Using Chaotic Electroosmotic Flow iii 誌謝 x 目錄 xii 表目錄 xv 圖目錄 xvii 符號表 xxi 第1章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究動機與目的 3 1.4論文架構 4 第2章 基本原理 5 2.1電雙層原理 5 2.2電滲流原理 6 2.3矩形管道內電滲流之管制方程式 6 2.4 矩形微流道內流體與粒子運動之演算 8 2.5單一渦流的邊界條件 13 2.6四渦流的邊界條件 14 2.7非對稱渦流的邊界條件 15 2.8不同模型的切換與渾沌電滲流的生成 17 2.9混合器效率之分析 18 2.10 渾沌行為之分析 20 2.10.1頻閃採樣法 22 2.10.2龐卡萊截面法 22 2.10.3相空間重構(reconstruction of phase space) 24 2.10.4奇異吸子、分維與碎形 25 2.10.5 Lyapunov指數 30 2.11切換週期和邊界流速的關係 36 第3章 渾沌電滲流的Lyapunov指數計算 38 3.1正方形混合器的Lyapunov指數 38 3.2長方形混合器的Lyapunov指數 39 第4章 對稱性渦流混合器之分析 43 4.1切換不同週期的混合效果之分析 43 4.2矩形長寬比對混合效果之分析 51 4.3側邊流速對於混合效率之分析 62 第5章 非對稱渦流對混合效率之分析 65 5.1長方形非對稱渦流混合器之效率分析 68 5.2正方形非對稱渦流混合器之效率分析 76 第6章 最佳設計的矩形微混合器之運作 80 第7章 結論和未來展望 90 參考文獻 93 附錄 95

    1. Khan, M.S., et al., MEMS sensors for diagnostics and treatment in the fight against COVID-19 and other pandemics. IEEE Access, 2021. 9: p. 61123-61149.
    2. Van den Berg, A., W. Olthuis, and P. Bergveld, Micro Total Analysis Systems 2000: Proceedings of the μTAS 2000 Symposium, held in Enschede, The Netherlands, 14–18 May 2000. 2013, Heidelberg: Springer Science & Business Media.
    3. Qian, S. and H.H. Bau, A chaotic electroosmotic stirrer. Analytical Chemistry, 2002. 74(15): p. 3616-3625.
    4. Aref, H., Stirring by chaotic advection. Journal of fluid mechanics, 1984. 143: p. 1-21.
    5. 劉秉正,非線性動力學與混沌基礎,1994,台北縣,財團法人徐氏基金會。
    6. 呂柏賢,電滲渾沌流之形成機制與其對微粒子混合效率之影響,2019,國立成功大學。
    7. Probstein, R.F., Physicochemical Hydrodynamics: An Introduction. 2005, United States: John Wiley & Sons.
    8. Larryisgood. A Diagram of the electrical double layer that forms at the surface of a charged particle. 2011. https://commons.wikimedia.org/wiki/File:Double_Layer.png.
    9. Sadeghi, A., M. Fattahi, and M. Hassan Saidi, An approximate analytical solution for electro-osmotic flow of power-law fluids in a planar microchannel. Journal of heat transfer, 2011. 133(9).
    10. Song, Y., et al., Vortex generation in electroosmotic flow in a straight polydimethylsiloxane microchannel with different polybrene modified-to-unmodified section length ratios. Microfluidics and Nanofluidics, 2019. 23(2): p. 24.
    11. 蔡秉宸,快速收斂之電滲流解析解與其在微粒子混合之應用,2015,國立成功大學。
    12. 林敏巧,利用電滲微渦流進行粒子聚集之微流體控制系統 2016,國立成功大學。
    13. García, L. and M. Angel. Continuación en Matlab de sistemas lineales a trozos. 2017.
    14. Ueda, Y., Explosion of strange attractors exhibited by Duffing's equation. Annals of the New York Academy of Sciences, 1980. 357(1): p. 422-434.
    15. Krishnavedala. Torus cycles. 2014; Available from: https://commons.wikimedia.org/wiki/File:Torus_cycles.svg.
    16. Libbrecht, K., The Snowflake. 2003, Minnesota: Voyageur Press.
    17. Hausdorff, F., Dimension and outer measure. Classics on Fractals, 1919: p. 75-99.
    18. Rani, M., R. Haq, and D. Verma, Variants of Koch curve: A review. International Journal of Computer Applications, 2018.
    19. Mandelbrot, B.B. and M. Frame, Fractals. Encyclopedia of physical science and technology, 1987. 5: p. 579-593.
    20. Haken, H., Advanced Synergetics: Instability Hierarchies of Self-organizing Systems and Devices. Vol. 20. 2012: Springer Science & Business Media.
    21. Li, C. 極限環. 2018; https://zhuanlan.zhihu.com/p/121678858.
    22. Cvitanović, P., The Chaos Book. 2012. 82-102.
    23. Kreyszig, E., Advanced Engineering Mathematics. 2015, United States: Wiley.
    24. Shimada, I. and T. Nagashima, A numerical approach to ergodic problem of dissipative dynamical Systems. Progress of Theoretical Physics, 1979. 61(6): p. 1605-1616.
    25. Wolf, A., et al., Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985. 16(3): p. 285-317.
    26. Govorukhin, V. Lyapunov exponent calculation for ODE-system. 2004; https://www.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode.
    27. Leïchlé, T., L. Nicu, and T. Alava, MEMS biosensors and COVID-19: missed opportunity. ACS Sensors, 2020. 5(11): p. 3297-3305.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE