| 研究生: |
林柏諺 Lin, Bo-Yan |
|---|---|
| 論文名稱: |
尖銳凹槽6061-T6鋁合金管在循環彎曲負載下皺曲損壞之研究 The Buckling Failure of Sharp-notched 6061-T6 Aluminum Alloy Tubes under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 鋁合金管 、尖銳凹槽 、皺曲損壞 、循環彎曲 |
| 外文關鍵詞: | aluminum alloy tube, sharp-notched, buckling failure, cyclic bending |
| 相關次數: | 點閱:119 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要針對六種尖銳凹槽深度之 6061-T6 鋁合金管作對稱循環彎曲負載實驗,以探討其力學行為與皺曲損壞關係。透過彎管實驗機與曲度─橢圓化量測器來進行實驗數據的控制、量測及蒐集,從實驗之彎矩─曲度曲線圖顯示,在對稱循環彎曲負載時,實驗試件皆會發生循環硬化現象,且經過反覆的加載與卸載行為後,其迴圈會漸趨於穩定。其次,由實驗之橢圓化─曲度曲線圖發現,橢圓化值會隨著循環彎曲的圈數增加而成棘齒狀增加,且當橢圓化值增加到某一臨界值時,圓管便會發生皺曲損壞。此外,由實驗之控制曲度─循環至皺曲圈數關係圖可看出,控制曲度越大則皺曲損壞圈數越小。且由其雙對數座標關係圖中可發現兩種趨勢,當凹槽深度小於或等於1.0 mm時,控制曲度─循環至皺曲圈數關係呈現近乎平行的直線;而當凹槽深度小於或等於1.2 mm時,控制曲度─循環至皺曲圈數關係則呈現不平行的直線。最後,本文參考 Shaw and Kyriakides【5】、Lee et al.【6】與范揚東【14】論文中所提出的理論方程式,並導入尖銳凹槽深度後提出一個可以描述不同尖銳凹槽深度圓管在循環彎曲負載時,控制曲度與循環至皺曲圈數關係的理論方程式,在與實驗值做比較後發現,理論分析能充分的描述實驗結果。
This thesis investigates the mechanical behavior and buckling failure of 6061-T6 aluminum alloy tubes with six different sharp-notched lengths subjected to symmetric cycling bending. The tube bending machine and curvature-ovalization measurement apparatus were used to control, measure and collect the experimental data. It can be observed from the experimental moment-curvature curve that the tube exhibits cyclical hardening during the symmetric cycling bending and becomes steady after a few cycles. Next, for the experimental ovalization-curvature curve, the ovalization of the tube cross-section increases in a ratcheting manner with the number of cycles. When the tube ovalization reaches to a critical amount, the tube buckles. In addition, it is shown in the experimental controlled curvature-number of cycles to buckling failure relationship that the larger controlled curvature leads to a fewer amount of the number of cycles to buckling failure. It can be observed from the relationship in a log-log scale that the controlled curvature-number of cycles to buckling failure relationships show parallel straight lines when the notch depth less than or equal to 1.0 mm; However, the controlled curvature-number of cycles to buckling failure relationships show nonparallel straight lines when the notch depth less than or equal to 1.2 mm. Finally, by referring the theoretical formulations proposed by Shaw and Kyriakides【5】, Lee et al.【6】and Fan【14】and including the factor of the sharp-notched lengths, a theoretical formulation was proposed to simulate the relationship between the controlled curvature and the number of cycles to buckling failure. By comparing the theoretical analysis with the experimental data, it is shown that the theoretical formulation can properly simulate the experimental results.
1.Chang, K. H., and Pan, W. F., “Buckling life estimation of circular tubes under cyclic bending,” International Journal of Solids and Structures, Vol. 46, pp. 254-270, (2009).
2.Corona, E., and Kyriakides, S., “An Experimental Investigation Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure,” Thin-Walled Structures, Vol. 12, pp. 229-263, (1991).
3.Corona, E., and Kyriakides, S., “On the Collapse of Inelastic Tubes under Combined Bending and Pressure,” International Journal of Solids and Structures, Vol. 24, pp. 505-535, (1988).
4.Kyriakides, S. and Ju, G. T., “Bifurcation Buckling Versus Limit Load Instabilities of Elastic-Plastic Tubes under Bending and External Pressure,” Journal of Offshore Mechanics and Arctic Engineering, Vol. 113, pp. 43-52, (1992).
5.Kyriakides, S., and Shaw, P. K., “Inelastic Buckling of Tubes under Cyclic Bending,” Journal of Pressure Vessel Technology, Vol. 109, pp. 169-178, (1987).
6.Lee, K. L., Pan, W. F., and Kuo, J. N., “The Influence of the Diameter-to -Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending,” International Journal of Solids and Structures, Vol. 38, pp. 2401-2413, (2001).
7.Lee, K. L., and Pan, W. F.,“Pure Bending Creep of SUS 304 Stainless Steel Tuber,” Steel and Composite Structures-an International Journal, Vol. 2, No. 6, pp. 461-474, (2002).
8.Lee, K. L., Shie, R. F., and Chang, K. H., “Experimental and Theoretical Investigation of the Response and Collapse of 316L Stainless Steel Tubes Subjected to Cyclic Bending,” JSME International Journal, Series A , Vol. 48, No. 3, pp. 155-162, (2005).
9.Pan, W. F., and Fan, C. H., “An Experimental Study on the Effect of Curvature-Rate at Preloading Stage on Subsequent Creep or Relaxation of Thin-Walled Tubes under Pure Bending,” JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531, (1998).
10.Pan, W. F., and Her Y. S., “Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending,” Journal of Engineering Materials and Technology, Vol. 120, pp. 001-004, (1998).
11.Pan, W. F., and Leu, K. T., “Endochronic analysis for viscoplastic collapse of a thin-walled tube under combined bending and external pressure,” JSME Int. J. Ser. A 40 (2), 189-199, (1997).
12.Pan, W. F., Wang, T. R., and Hsu, C. M., “A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending,” Experimental Mechanics, Vol. 38, No. 2, pp. 99-102, (1998).
13.Shaw, P. K. and Kyriakides, S., “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending,” International Journal of Solids and Structures, Vol. 21, pp. 1073-1100, (1985).
14.范揚東,「尖銳凹槽薄壁管在循環彎曲負載下力學行為和皺曲損壞之研究」,國立成功大學工程科學研究所碩士論文,(2008)。
15.林家宇,「橢圓凹槽薄壁管在循環彎曲負載下力學行為和皺曲損壞之研究」,國立成功大學工程科學研究所碩士論文,(2009)。