簡易檢索 / 詳目顯示

研究生: 劉智恩
Liu, Chih-En
論文名稱: 應用代理模型優化155公厘榴彈於超音速下之幾何
Optimizing the Geometry of the 155mm Projectile for Supersonic Performance Using Surrogate-based Models
指導教授: 吳志勇
Wu, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 133
中文關鍵詞: 155公厘榴彈代理模型計算流體力學底排彈全域優化
外文關鍵詞: 155mm projectile, Surrogate-based Model, Computational Fluid Dynamics(CFD), Base-bleed Projectile, Gobal optimization
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Extended Abstract iii 誌謝 xv 目錄 xviii 圖目錄 xx 表目錄 xxiii 符號及簡寫表 xxiv 第1章 前言 1 第2章 文獻回顧 3 2-1 SCOBT彈體實驗及半經驗公式對比 3 2-2 SCOBT彈體減阻方法-船尾後彈體及彈尾凹底 9 2-3 SCOBT 彈體減阻方法-底座排氣及底座燃燒 13 2-4 SCOBT 155公厘榴彈-數值及實驗之驗證 21 2-5代理模型應用於SCOBT砲彈幾何最佳化 24 2-6研究動機與目的 28 第3章 研究方法 29 3-1 計算流體力學及有限體積法 29 3-1.1計算流體力學 29 3-1.2 有限體積法 29 3-2 統御方程式及紊流模型 32 3-2.1 統御方程式 32 3-2.2 紊流模型 34 3-3 代理模型及拉丁超立方抽樣 45 3-3.1 拉丁超立方抽樣 45 3-3.2 代理模型及貝葉斯優化 47 3-4幾何建模及網格獨立性測試 54 3-4.1M107 155公厘榴彈幾何建模 54 3-4.2計算域及網格獨立性測試 56 3-4.3 M107 155公厘飛行阻力之分析 61 3-5初始條件及邊界條件 64 3-6 變數設計及研究流程圖 68 第4章 結果與討論 72 4-1 M107 155公厘榴彈數值與實驗之驗證 72 4-1.1求解器選擇 72 4-1.2數值模擬與實驗值之驗證 74 4-2 優化構型與原始構型之阻力係數及流場探討 76 4-2.1優化構型與原始構型之阻力係數比較 76 4-2.2 於優化構型與原始構型於超音速下阻力係數及流場探討 83 4-3 變數敏感性分析 92 4-3.1 變數敏感性分析 92 4-3.2 探討固定深度及注入質量參數後面積對於目標函數之影響 94 第5章 結論與未來展望 95 5-1結論 95 5-2 未來展望 96 參考文獻 97 附錄 I 附錄一 I 附錄二 II

    [1] J. Ma, Z. Chen, D. Xue, and X. Sun, "Influences of boattail structures on aerodynamic characteristics of supersonic spinning projectiles," Theor Comp Fluid Dyn, vol. 34, pp. 249-270, 2020.
    [2] M. A. Dali, S. Jaramaz, D. Jerković, and D. Djurdjevac, "Increasing the Range of Contemporary Artillery Projectiles," Tehnički vjesnik, vol. 26, no. 4, pp. 960-969, 2019.
    [3] X. Xue and Y. Yu, "An improvement of the base bleed unit on base drag reduction and heat energy addition as well as mass addition," Applied Thermal Engineering, vol. 109, pp. 238-250, 2016.
    [4] M. A. Dali and S. Jaramaz, "Optimization of artillery projectiles base drag reduction using hot base flow," Thermal Science, vol. 23, no. 1, pp. 353-364, 2019.
    [5] 蔡旻橋, "超音速榴彈砲氣動力分析," 碩士, 航空太空工程學系碩士在職專班, 國立成功大學, 台南市, 2023. [Online]. Available: https://hdl.handle.net/11296/8bcujm
    [6] 王景平, "155公厘底凹型榴彈氣動力特性分析," 碩士, 機械工程碩士班, 國防大學理工學院, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/x7n8tj
    [7] R. L. McCoy, MC DRAG-a computer program for estimating the drag coefficients of projectiles. US Army Armament Research and Development Command, Ballistic Research Laboratory, 1981.
    [8] R. L. McCoy, Modern exterior ballistics: The launch and flight dynamics of symmetric projectiles. Schiffer Pub., 1999.
    [9] L. D. Kayser and F. Whiton, Surface pressure measurements on a boattailed projectile shape at transonic speeds. Ballistic Research Laboratory, 1982.
    [10] M. Miller, "Wind tunnel measurements of the Magnus induced surface pressures on a spinning projectile in the transonic speed regime," in Applied Aerodynamics Conference, 1983, p. 1838.
    [11] J.-K. FU and S.-M. LIANG, "A numerical study on drag reduction for turbulent transonic flow over a projectile," in 27th Joint Propulsion Conference, 1991, p. 2260.
    [12] M. Suliman, O. Mahmoud, M. Al-Sanabawy, and O. Abdel-Hamid, "Computational investigation of base drag reduction for a projectile at different flight regimes," in International Conference on Aerospace Sciences and Aviation Technology, 2009, vol. 13, no. AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT-13, May 26–28, 2009: The Military Technical College, pp. 1-13.
    [13] J. Sahu, "Supersonic flow over cylindrical afterbodies with base bleed," Computational mechanics, vol. 2, no. 3, pp. 176-184, 1987.
    [14] J.-K. Fu and S.-M. Liang, "Drag reduction for turbulent flow over a projectile: Part I," J Spacecraft Rockets, vol. 31, no. 1, pp. 85-92, 1994.
    [15] H. Bournot, E. Daniel, and R. Cayzac, "Improvements of the base bleed effect using reactive particles," Int J Therm Sci, vol. 45, no. 11, pp. 1052-1065, 2006.
    [16] P. Kaurinkoski and A. Hellsten, "Numerical simulation of a supersonic base-bleed projectile with improved turbulence modeling," J Spacecraft Rockets, vol. 35, no. 5, pp. 606-611, 1998.
    [17] F. Simon, S. Deck, P. Guillen, and R. Cayzac, "Numerical simulations of projectile base flow," in 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, p. 1116.
    [18] A. Ferfouri, T. Allouche, D. D. Jerković, N. Hristov, M. Vučković, and A. Benmeddah, "PREDICTION OF DRAG AERODYNAMIC COEFFICIENT OF THE 155MM PROJECTILE UNDER AXISYMMETRIC FLOW USING DIFFERENT APPROACHES," Journal of the Serbian Society for Computational Mechanics/Vol, vol. 17, no. 2, pp. 69-86, 2023.
    [19] S. Jeong, S. Obayashi, and K. Yamamoto, "Aerodynamic optimization design with Kriging model," Transactions of the Japan society for Aeronautical and Space Sciences, vol. 48, no. 161, pp. 161-168, 2005.
    [20] G. Arnoult, M. Zeidler, and E. Garnier, "Optimization Methodology for a 2-D Course Correction of a 155 mm Spin-Stabilized Projectile," in 2018 Applied Aerodynamics Conference, 2018, p. 3950.
    [21] G. Arnoult, M. Zeidler, and E. Garnier, "Control surface geometry surrogate-based optimization for spin-stabilized projectile course correction," AIAA journal, vol. 58, no. 2, pp. 550-560, 2020.
    [22] B. Xing, C. Du, Z. Du, and W. Yang, "Robust Optimization Design of the Aerodynamic Shape and External Ballistics of a Pulse Trajectory Correction Projectile," Applied Sciences, vol. 13, no. 12, p. 7007, 2023.
    [23] G. Nikishkov, "Introduction to the finite element method," University of Aizu, pp. 1-70, 2004.
    [24] F. Moukalled, L. Mangani, M. Darwish, F. Moukalled, L. Mangani, and M. Darwish, The finite volume method. Springer, 2016.
    [25] A. Fluent, "Ansys fluent theory guide," Ansys Inc., USA, vol. 15317, pp. 724-746, 2011.
    [26] A. N. Kolmogorov, "Dissipation of energy in isotropic turbulence," in Dokl. Akad. Nauk SSSR, 1941, vol. 32, pp. 325-327.
    [27] A. N. Kolmogorov, "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers," Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 434, no. 1890, pp. 9-13, 1941.
    [28] F. G. Schmitt, "About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity," Comptes Rendus Mécanique, vol. 335, no. 9-10, pp. 617-627, 2007.
    [29] P. Spalart and S. Allmaras, "A one-equation turbulence model for aerodynamic flows," in 30th aerospace sciences meeting and exhibit, 1992, p. 439.
    [30] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," in Numerical prediction of flow, heat transfer, turbulence and combustion: Elsevier, 1983, pp. 96-116.
    [31] V. Yakhot, S. A. Orszag, S. Thangam, T. Gatski, and C. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Physics of Fluids A: Fluid Dynamics, vol. 4, no. 7, pp. 1510-1520, 1992.
    [32] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, "A new k-ϵ eddy viscosity model for high reynolds number turbulent flows," Computers & fluids, vol. 24, no. 3, pp. 227-238, 1995.
    [33] D. C. Wilcox, "Reassessment of the scale-determining equation for advanced turbulence models," AIAA journal, vol. 26, no. 11, pp. 1299-1310, 1988.
    [34] F. R. Menter, "Improved two-equation k-omega turbulence models for aerodynamic flows," 1992.
    [35] F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal, vol. 32, no. 8, pp. 1598-1605, 1994.
    [36] F. R. Menter, M. Kuntz, and R. Langtry, "Ten years of industrial experience with the SST turbulence model," Turbulence, heat and mass transfer, vol. 4, no. 1, pp. 625-632, 2003.
    [37] A. Wimshurst. Fluid Mechanics 101 [Online] Available: https://www.fluidmechanics101.com/pages/lectures.html
    [38] D. M. Mckay, Beckman, R., and Conover, W., "A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code," Technometrics, vol. 21, pp. 239-245, 1979.
    [39] M. D. Morris and T. J. Mitchell, "Exploratory designs for computational experiments," Journal of statistical planning and inference, vol. 43, no. 3, pp. 381-402, 1995.
    [40] A. Forrester, A. Sobester, and A. Keane, Engineering design via surrogate modelling: a practical guide. John Wiley & Sons, 2008.
    [41] A. I. Forrester, A. Sóbester, and A. J. Keane, "Multi-fidelity optimization via surrogate modelling," Proceedings of the royal society a: mathematical, physical and engineering sciences, vol. 463, no. 2088, pp. 3251-3269, 2007.
    [42] A. J. K. Alexander I.J. Forrester, "Recent advances in surrogate-based optimization," Progress in Aerospace Sciences, vol. 45, no. 1-3, pp. 50-79, 2009, doi: https://doi.org/10.1016/j.paerosci.2008.11.001.
    [43] S. Koziel and L. Leifsson, Simulation-driven design by knowledge-based response correction techniques. Springer, 2016.
    [44] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning (no. 3). MIT press Cambridge, MA, 2006.
    [45] X. Yang, D. Barajas-Solano, G. Tartakovsky, and A. M. Tartakovsky, "Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method for data-model convergence," Journal of Computational Physics, vol. 395, pp. 410-431, 2019.
    [46] M. Wessam and Z. Chen, "Firing precision evaluation for unguided artillery projectile," in 2015 International Conference on Artificial Intelligence and Industrial Engineering, 2015: Atlantis Press, pp. 584-587.
    [47] "Examining Spatial (Grid) Convergence." NPARC Alliance CFD Verification and Validation Web site. https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html (accessed.
    [48] P. J. Roache, Verification and validation in computational science and engineering. Hermosa Albuquerque, NM, 1998.
    [49] E. M. Youssef, M. A. Radwan, H. E. Mostafa, and M. K. Hadhoud, "Low signature advanced base bleed grains," International Journal of Scientific & Engineering Research, vol. 6, no. 12, pp. 980-985, 2015.
    [50] M.-S. Liou, "A sequel to AUSM, Part II: AUSM+-up for all speeds," Journal of computational physics, vol. 214, no. 1, pp. 137-170, 2006.
    [51] M. J. Andrew Heather , Mark Olesen,Kutalmış Berçin,Matej Forman,Matej Forman,Pawan Ghildiyal,Chiara Pesci,Fred Mendonça,Swapnil Salokhe,Jiri Polansky,OpenCFD Ltd,Jozsef Nagy, "Open∇FOAM:The Open Source CFD Toolbox, User and Theory Guide v2312," 2023. [Online]. Available: https://doc.openfoam.com/2312/
    [52] J. P. S. Vale, "Aerothermodynamic analysis of an experimental rocket aimed to test micro-launcher technologies," Universidade da Beira Interior (Portugal), 2022.
    [53] "High Speed Aerodynamic Solver:User Guide," CSIR, 2021.
    [54] J. A. Heyns, O. F. Oxtoby, and A. Steenkamp, "Modelling high-speed flow using a matrix-free coupled solver," in Proceedings of the 9th OpenFOAM Workshop, Zagreb, Croatia, 2014, pp. 23-26.
    [55] P. Das and A. De, "Numerical study of flow physics in supersonic base-flow with mass bleed," Aerospace Science and Technology, vol. 58, pp. 1-17, 2016.
    [56] X. Yang, Y. Hu, Z. Gong, J. Jian, and Z. Liu, "Numerical study of combined drag reduction bases on vortex generators and riblets for the ahmed body using IDDES methodology," Journal of Applied Fluid Mechanics, vol. 15, no. 1, pp. 193-207, 2021.

    無法下載圖示 校內:2029-08-13公開
    校外:2029-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE