簡易檢索 / 詳目顯示

研究生: 田哲宇
Tien, Che-Yu
論文名稱: 一基於混沌理論之有效影像加密系統
An efficient chaos-based encryption scheme for images
指導教授: 陳進興
Chen, Chin-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 52
中文關鍵詞: 影像加密混沌擴散排列
外文關鍵詞: image encryption, chaos, diffusion, confusion
相關次數: 點閱:116下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 排列與擴散為一混沌加密系統的兩個基本單元。近年新興的一改進方向為結合排列與擴散以減少影像掃描次數,進而達到速度與效益上的提升。

    本論文以Wang的加密系統為基礎,提出一新的影像加密方法。我們保留了Wang將明文分割成區塊和利用NCML同時執行排列與擴散的優點,並引入一將明文轉換為新格式以加快加密的概念。新格式由8張獨立的轉換子影像堆疊而成。這些轉換子影像的上半部資訊較低,只需較低複雜度運算的加密,下半部的資訊量較高,則需較高複雜運算的加密。再者,每張轉換子影像大小只有原明文的1/8,只需計算1/8數量的擴散遮罩與新位置。基於以上理由,本論文所提加密方法可以大大節省計算量。

    實驗結果顯示,所提的加密系統在達到NPCR=99.5973%及UACI=33.45785% 的安全要求下,與Wang的系統相比有較佳的速度效益。以 4096 x 4096 的影像為例,我們的速度只有Wang的43%。

    In recent years, various chaos-based cryptosystems with permutation and diffusion have been proposed. An improvement direction is to combine permutation and diffusion to avoid duplicating scanning and to raise the efficiency.

    Based on the Wang’s system, this thesis proposed an efficient image encryption scheme which maintains the advantages of dividing the plain image into blocks type and utilizing spatiotemporal chaos with NCML to perform permutation and diffusion simultaneously. Besides, we incorporates an idea which transforms the plain image into a new format. The new format could be seen as 8 independent transformed subimages stacking together. These transformed subimages consist of two parts. The upper part is nearly random and unrecgonizable and therefore needs encryption of lower computational effort. The lower part is highly informative which needs encryption of higher computational effort. Since the size of each transformed subimage is just 1/8 of that of the plain image and same diffusion masks and new posistions are used for every subimage, only 1/8 numbers of diffusion masks and new positions should be calculated. Based on the above observations, our proposed scheme is very efficient.

    Experimental result shows that the propsed encryption scheme under the security requirement NPCR=99.5973% and UACI=33.45785% has better speed efficiency as compared with the Wang’s. For an image of 4096 x 4096, the encryption time is only 59% of the Wang’s for R = 1, and 43% for R=2.

    摘要 I Abstract III 誌謝 V Content VI Table Captions VIII Figure Captions IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 1 1.3 Previous works 4 1.4 Organization 7 Chaper 2 An overview of chaotic cryptosystems 8 2.1 S. Lian et. al. 2005 8 2.2 K. W. Wong et. al. 2008 12 2.3 Y. Wang et. al. 2011 15 Chapter 3 The proposed cryptosystem 21 3.1 Concepts 21 3.2 Converting an image into bit-planes 22 3.3 Proposed encryption/decryption algorithm 24 Chapter 4 The proposed cryptosystem 30 4.1 Key space analysis 30 4.2 Differential attack 32 4.3 Statistical analysis 35 4.4 Entropy analysis 38 4.5 Computational complexity analysis 38 Chapter 5 Conclusion 48 Reference: 49

    [1] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol. 16, No. 8, Pages:2129 -2151, 2006.
    [2] D. Arroyo, Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems, Ph.D. Thesis, ETSIA of the Polytechnic University of Madrid, Madrid, Spain, July 2009. Available online at: http://digital.csic.es/handle/10261/15668.
    [3] G. Chen, Y. Mao, C. K. Chui. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749–61.
    [4] K. M. Cuomo, A. V. Oppenheim. Circuit implementation of synchronized chaos with applications to communications. Phys Rev Lett 1993;71(1):65–8.
    [5] J. Fridrich. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259–84.
    [6] Y. Hai, Z. Zhiliang, C. Guanrong. An Efficient Encryption Algorithm Based on Image Reconstruction. 2009 International Workshop on Chaos-Fractals Theories and Applications. DOI 10.1109/IWCFTA.2009.49]
    [7] L. Kocarev, K. S. Halle, K. Eckert, L. Chua, U. Parlitz. Experimental demonstration of secure communications via chaotic synchronization. Int J Bifurcat Chaos 1992;2(3):709–13.
    [8] L. Kocarev, “Chaos-based cryptography: A brief overview,” IEEE Circuits and Systems Magazine, Vol. 1, Pages:6-21, 2001.
    [9] S. Lian, J. Sun, Z. Wang, A block cipher based on a suitable use of the chaotic standard map, Chaos Solitons & Fractals (26) (2005) 117–129.
    [10] NIST Special Publication 800-22, http://csrc.nist.gov/rng/rng2.html, 2001.
    [11] Claude Shannon (1949). Communication theory of secrecy systems. Bell Sys. Tech. J., 28:656–715.
    [12] K. M. Short. Steps toward unmasking secure communications. Int J Bifurcat Chaos 1994;4(4):959–77.
    [13] Y. Wang, X. Liao, T. Xiang, K. W. Wong and D. Yang, “Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map,” Physics Letters A, Vol. 363, Pages:277-281, 2007.
    [14] Y. Wang, L. Luo, Q. Xie, H. Tian, H. Yang, “A fast stream cipher based on spatiotemporal chaos,” 2009 International Symposium on Information Engineering and Electronic Commerce, 978-0-7695-3686-6/09, 2009 IEEE DOI 10.1109/IEEC.2009.93
    [15] Y. Wang, K. W. Wong, X. Liao, G. Chen. A new chaos-based fast image encryption algorithm. Appl Soft Computing 11 (2011) 514-522
    [16] X. Wang, C. Yu, “Cryptanalysis and improvement on a cryptosystem based on a chaotic map,” Computers and Mathematics with Applications, Vol. 57, Pages:476-482, 2009.
    [17] K. W. Wong, B.S. Kwok, W.S. Law, A fast image encryption scheme based on chaotic standard map, Physics Letters A (372) (2008) 2645–2652.
    [18] T. Xiang, X. Liao, G. Tang, Y. Chen and K. W. Wong, “A novel block cryptosystem based on iterating a chaotic map,” Physics Letters A, Vol. 349, Pages:109-115, 2006.
    [19] T. Yang, L. Chua. Channel-independent chaotic secure communication. Int J Bifurcat Chaos 1996;6(12B):2653–60.
    [20] H. Yang, K. W. Wong, X. Liao, W. Zhang and P. Wei, A fast image encryption and authentication scheme based on chaotic maps, Commun Nonlinear Sci Numer Simul 15 (2010), pp. 3507–3517.

    下載圖示 校內:2016-08-11公開
    校外:2016-08-11公開
    QR CODE