簡易檢索 / 詳目顯示

研究生: 孫暐傑
Sun, Wei-Jie
論文名稱: 以溶膠–凝膠法合成p型CuAlO2粉末與其多孔薄膜的製備及特性分析
Synthesis of p-type CuAlO2 powders through a sol-gel method and the fabrication and characterization of its mesoporous thin film
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: CuAlO2膠體溶液法多孔型薄膜
外文關鍵詞: CuAlO2, sol-gel method, mesoporous thin film
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用膠體溶液法合成CuAlO2粉末,並透過網版印刷法將其製作成多孔型薄膜,以對此CuAlO2多孔型進行特性分析。於合成CuAlO2粉末之流程中,吾人測試不同反應的溫度以及時間(1100°C-15, 30, 60, 90, 120, 180, 240分鐘, 1150°C-1, 2, 3, 4 小時)並利用XRD與拉曼分析觀察其對於相合成之影響。此外,不同的介面活性劑添加量(0, 1, 2, 3 ml)以及反應前驅溶液pH值(pH=-1, 1, 3, 5)對於粉末晶粒大小、顆粒尺寸之影響亦於本實驗中研究探討,並且將合成之CuAlO2粉末運用滾珠球磨法球磨6小時使之磨細、粉碎,最後透過網版印刷法將粉末分散液在玻璃基板上塗佈5次並烤乾以製作多孔型薄膜。本實驗成功利用界面活性劑之添加製作出均勻的CuAlO2多孔型薄膜,並觀察其於可見光區之透光率為30%以下;最佳之載子濃度、遷移率與電阻率分別為2×1013 cm-3, 3.6×102 cm2/Vs and 4.6×103 Ωcm;此外,吾人亦發現在玻璃板上覆蓋一層此多孔型薄膜後,其具有增加熱傳輸效率之效果。

    In this work, fabrication of mesoporous CuAlO2 (CAO) thin films have been achieved by using screen printing. CuAlO2 particles was synthesized using sol-gel method with Cu(NO3)2 and Al(NO3)3 as the precursors. Different annealing temperature and time (1100°C-15, 30, 60, 90, 120, 180, 240 min, 1150°C-1, 2, 3, 4 h) were compared with the phase formation analyze by XRD and Raman. Different addition amount of polyethylene glycol (PEG) as surfactant (0, 1, 2, 3 ml) and different pH values of precursor solution (pH=-1, 1, 3, 5) were also used to investigate the crystalline and particle size changes. Ball-milling processing was also utilized to crush and separate particles. Finally, the obtained CuAlO2 particles were tried to be screen printed onto glass substrate to form mesoporous thin films. Uniform mesoporous CuAlO2 thin films were obtained by screen printing for 5 times. The transmittance of mesoporous CuAlO2 thin films were found to be less than 30% in visible region. The measured carrier concentration, mobility and resistivity of the film were up to 2×1013 cm-3, 3.6×102 cm2/Vs and 4.6×103 Ωcm respectively. Furthermore, the heat transfer rate were found to be faster for glass substrates with a mesoporous CuAlO2 thin film than without it.

    摘要 I Abstract II 誌謝 XXI 總目錄 XXII 圖目錄 XXVI 表目錄 XXIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 3 2-1 CuAlO2基本結構與性質 3 2-2 CuAlO2的合成 5 2-2-1 CuAlO2之相圖 5 2-2-2 CuAlO2之製備方法 12 2-2-2-1 固態反應法(Solid-state reaction) 13 2-2-2-2 水熱法(Hydrothermal method) 13 2-2-2-3 溶膠–凝膠法(Sol-gel method) 14 2-3 溶膠–凝膠法(Sol-gel method) 15 2-4 球磨法(Ball-milling) 16 2-5 旋轉塗佈法 (Spin-coating) 16 2-6 網版印刷法 17 第三章 實驗方法與分析儀器原理 19 3-1 實驗材料與藥品 19 3-2 實驗流程圖 20 3-2-1 CuAlO2粉末合成 20 3-2-2 薄膜之製備 21 3-3 材料與薄膜之製備 22 3-3-1 CuAlO2粉末合成 22 3-3-1-1 膠體溶液法 22 3-3-1-2 鍛燒法 23 3-3-1-3 球磨法 24 3-3-2 薄膜之製備 25 3-3-2-1 離心分離法 25 3-3-2-2 旋轉塗佈法 25 3-3-2-3 網版印刷法 26 3-4 實驗目標 28 3-5 實驗設備 28 3-5-1 退火爐系統 28 3-6 微結構、成分及表面分析 30 3-6-1 X光繞射儀(X-ray Diffraction Spectrometer, XRD) 30 3-6-2 拉曼散射光譜儀(Raman Scattering Spectrometer) 32 3-6-3 X光光電子光譜儀(X-ray Photoelectron Spectrometer, XPS) 35 3-6-4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 35 3-6-5 表面粗度分析儀(Alpha-Step Profilometer) 36 3-7 光學及電性質分析 38 3-7-1 紫外光-可見光光譜儀(UV-visible spectrometer) 38 3-7-2 霍爾量測(Hall measurement) 40 第四章 結果與討論 44 4-1 不同製程溫度對氧化鋁銅系統之影響 44 4-1-1 XRD晶體結構分析 44 4-1-2 Crystalline size分析 48 4-1-3 Raman光譜分析 50 4-1-4 XPS 元素分析 56 4-2 不同界面活性劑量對氧化鋁銅粉末合成的影響 60 4-2-1 於高溫下退火的樣品分析 60 4-2-1-1 XRD晶體結構分析 60 4-2-1-2 Raman光譜分析 61 4-2-1-3 Crystalline size分析 62 4-2-1-4 SEM表面形貌分析 63 4-2-2 於低溫下退火的樣品分析 66 4-2-2-1 XRD晶體結構分析 66 4-2-2-2 Raman光譜分析 68 4-2-2-3 Crystalline size分析 70 4-2-2-4 SEM表面形貌分析 71 4-3 不同製程pH值對氧化鋁銅粉末合成的影響 73 4-3-1 XRD晶體結構分析 73 4-3-2 Raman光譜分析 74 4-3-3 Crystalline size分析 75 4-3-4 SEM表面形貌分析 77 4-4 滾珠球磨法對粉末表面形貌之影響 78 4-5 薄膜特性分析 81 4-5-1 SEM與α-step表面形貌分析 81 旋轉塗佈法 81 網版印刷法 88 4-5-2 UV-vis光學分析 96 4-5-3 霍爾量測電性分析 98 4-5-4 熱傳導性質分析 102 第五章 結論 104 參考文獻 105

    1. Streintz, F., Annals of Physics. (Leipzig), 1902: p. 9854.
    2. Badeker, K., Annals of Physics. (Leipzig), 1907. 22: p. 749.
    3. Kawazoe, H., et al., P-type electrical conduction in transparent thin films of CuAlO2. Nature, 1997. 389(6654): p. 939-942.
    4. Thirumalairajan, S., V.R. Mastelaro, and C.A. Escanhoela, Jr., In-depth understanding of the relation between CuAlO(2) particle size and morphology for ozone gas sensor detection at a nanoscale level. ACS Appl Mater Interfaces, 2014. 6(23): p. 21739-49.
    5. Thirumalairajan, S. and V.R. Mastelaro, A novel organic pollutants gas sensing material p-type CuAlO 2 microsphere constituted of nanoparticles for environmental remediation. Sensors and Actuators B: Chemical, 2016. 223: p. 138-148.
    6. Koriche, N., et al., Photocatalytic hydrogen evolution over delafossite. International Journal of Hydrogen Energy, 2005. 30(7): p. 693-699.
    7. Bandara, J. and J.P. Yasomanee, p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Science and Technology, 2007. 22(2): p. 20-24.
    8. Ahmed, J., et al., Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. Journal of Alloys and Compounds, 2014. 591: p. 275-279.
    9. Nattestad, A., et al., Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications. Journal of Photonics for Energy, 2011. 1: p. 9.
    10. Igbari, F., et al., A room-temperature CuAlO2hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A, 2016. 4(4): p. 1326-1335.
    11. Nakanishi, A. and H. Katayama-Yoshida, Chemical trend of superconducting transition temperature in hole-doped delafossite of CuAlO2, AgAlO2 and AuAlO2. Solid State Communications, 2012. 152(23): p. 2078-2081.
    12. Li, J., et al., Trends in negative thermal expansion behavior for AMO2 (A=Cu or Ag; M=Al, Sc, In, or La) compounds with the delafossite structure. Journal of Solid State Chemistry, 2005. 178(1): p. 285-294.
    13. Lee, M.S., T.Y. Kim, and D. Kim, Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal. Applied Physics Letters, 2001. 79(13): p. 2028-2030.
    14. Yang, J.L.a.Y.-J.L.a.H.-C.H.a.C.-J.L.a.Y.-W., Tuning the formation of p-type defects by peroxidation of CuAlO2 films. Journal of Applied Physics, 2013. 114(3): p. 033712.
    15. Banerjee, A.N. and K.K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Progress in Crystal Growth and Characterization of Materials, 2005. 50(1-3): p. 52-105.
    16. Chaklader, S.K.M.a.A.C.D., The System Copper Oxide—Alumina. American Ceramic Society, 1963. 46(10).
    17. Hu, C.Y., K. Shih, and J.O. Leckie, Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge. J Hazard Mater, 2010. 181(1-3): p. 399-404.
    18. Jacob, K.T. and C.B. Alcock, THERMODYNAMICS OF CUALO2 AND CUAL2O4 AND PHASE-EQUILIBRIA IN SYSTEM CU2O-CUO-AL2O3. Journal of the American Ceramic Society, 1975. 58(5-6): p. 192-195.
    19. Arjmand, M., et al., Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2012. 51(43): p. 13924-13934.
    20. Vojisavljevic, K., et al., Solid state synthesis of nano-boehmite-derived CuAlO2 powder and processing of the ceramics. Journal of the European Ceramic Society, 2013. 33(15-16): p. 3231-3241.
    21. Banerjee, A.N. and K.K. Chattopadhyay, Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films. Journal of Applied Physics, 2005. 97(8).
    22. Banerjee, A.N. and S.W. Joo, Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications. Nanotechnology, 2011. 22(36).
    23. Banerjee, A.N., S. Kundoo, and K.K. Chattopadhyay, Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering. Thin Solid Films, 2003. 440(1-2): p. 5-10.
    24. Yanagi, H., et al., Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. Journal of Applied Physics, 2000. 88(7): p. 4159-4163.
    25. BÜYÜKBEKAR, M.S.Y., et al., Production of CuAlO2 in powder, bulk and nanofiber forms. Journal of Ceramic Processing Research, 2015. 16(5): p. 648-655.
    26. Gao, S., et al., Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnology, 2003. 14(5): p. 538.
    27. Shahriari, D.Y., et al., A high-yield hydrothermal preparation of CuAlO2. Inorganic chemistry, 2001. 40(23): p. 5734-5735.
    28. Xiong, D., et al., Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorganic chemistry, 2014. 53(8): p. 4106-4116.
    29. Deng, Z., et al., Synthesis of CuAlO 2 ceramics using sol-gel. Materials Letters, 2007. 61(3): p. 686-689.
    30. Ghosh, C., et al., Preparation of nanocrystalline CuAlO2 through sol–gel route. Journal of sol-gel science and technology, 2009. 52(1): p. 75-81.
    31. Ohashi, M., Y. Iida, and H. Morikawa, Preparation of CuAlO2 films by wet chemical synthesis. Journal of the American Ceramic Society, 2002. 85(1): p. 270-272.
    32. Tonooka, K., K. Shimokawa, and O. Nishimura, Properties of copper–aluminum oxide films prepared by solution methods. Thin Solid Films, 2002. 411(1): p. 129-133.
    33. Gong, H., Y. Wang, and Y. Luo, Nanocrystalline p-type transparent Cu–Al–O semiconductor prepared by chemical-vapor deposition with Cu(acac)2 and Al(acac)3 precursors. Applied Physics Letters, 2000. 76(26): p. 3959-3961.
    34. Cai, J. and H. Gong, The influence of Cu∕Al ratio on properties of chemical-vapor-deposition-grown p-type Cu–Al–O transparent semiconducting films. Journal of Applied Physics, 2005. 98(3): p. 033707.
    35. Kakihana, M., 'Sol-Gel' preparation of high temperature superconducting oxides. Journal of Sol-Gel Science and Technology, 1996. 6(1): p. 7-55.
    36. Nishio, T. and Y. Fujiki, PREPARATION OF SUPERCONDUCTING YBA2CU3O7-X FIBERS THROUGH METAL CITRATE GEL AS A PRECURSOR. Journal of Materials Science Letters, 1993. 12(6): p. 394-398.
    37. Chu, C. and B. Dunn, PREPARATION OF HIGH-TC SUPERCONDUCTING OXIDES BY THE AMORPHOUS CITRATE PROCESS. Journal of the American Ceramic Society, 1987. 70(12): p. C375-C377.
    38. Junod, A., A. Bezinge, and J. Muller, OPTIMIZATION OF THE SPECIFIC-HEAT JUMP AT TC AND MAGNETIC-PROPERTIES OF THE SUPERCONDUCTOR YBA2CU3O7. Physica C, 1988. 152(1): p. 50-64.
    39. Blank, D.H.A., H. Kruidhof, and J. Flokstra, PREPARATION OF YBA2CU3O7-DELTA BY CITRATE SYNTHESIS AND PYROLYSIS. Journal of Physics D-Applied Physics, 1988. 21(1): p. 226-227.
    40. Macmanus, J.L., D.J. Fray, and J.E. Evetts, DETERMINATION OF DIFFERENT OXYGEN-TRANSPORT MECHANISMS AND MEASUREMENT OF THE OXYGEN ION CONDUCTIVITY OF Y1BA2CU3O7-X. Physica C, 1992. 190(4): p. 511-521.
    41. Suryanarayana, C., Mechanical alloying and milling. Progress in Materials Science, 2001. 46(1-2): p. 1-184.
    42. Vanara, F., A. Reyneri, and M. Blandino, Fate of fumonisin B-1 in the processing of whole maize kernels during dry-milling. Food Control, 2009. 20(3): p. 235-238.
    43. Altun, O., H. Benzer, and U. Enderle, Effects of operating parameters on the efficiency of dry stirred milling. Minerals Engineering, 2013. 43-44: p. 58-66.
    44. Toraman, O.Y. and D. Katircioglu, Effect of Various Operating Factors on Wet Stirred Mill Performance. Particulate Science and Technology, 2011. 29(3): p. 242-251.
    45. Tka´cˇova´, K., Developments in Mineral Processing. 1989: p. 155.
    46. Tkacova, K. and N. Stevulova, CHANGE IN STRUCTURE AND ENTHALPY OF CARBONATES AND QUARTZ ACCOMPANYING GRINDING IN AIR AND AQUEOUS ENVIRONMENTS. Powder Technology, 1987. 52(2): p. 161-166.
    47. Bala´zˇ, P., Extractive Metallurgy of Activated Minerals. 2000.
    48. Mori, R., et al., Organic solvent based TiO2 dispersion paste for dye-sensitized solar cells prepared by industrial production level procedure. Journal of Materials Science, 2010. 46(5): p. 1341-1350.
    49. Etgar, L., et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012. 134(42): p. 17396-9.
    50. Huang, H., et al., Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells. Chem Commun (Camb), 2015. 51(51): p. 10306-9.
    51. Ito, S., et al., Carbon-double-bond-free printed solar cells from TiO(2)/CH(3)NH(3)PbI(3)/CuSCN/Au: structural control and photoaging effects. Chemphyschem, 2014. 15(6): p. 1194-200.
    52. Trifiletti, V., et al., NiO/MAPbI(3-x)Clx/PCBM: a model case for an improved understanding of inverted mesoscopic solar cells. ACS Appl Mater Interfaces, 2015. 7(7): p. 4283-9.
    53. 林麗娟, X光繞射原理及其應用. 工業材料, 1994. 86: p. 100.
    54. Schrader, B., Infrared and Raman Spectroscopy. 1995(Chapter 4).
    55. Singh, M.K., et al., Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films. Journal of Applied Physics, 2008. 104(11): p. 113503.
    56. Pellicer-Porres, J., et al., Pressure and temperature dependence of the lattice dynamics ofCuAlO2investigated by Raman scattering experiments andab initiocalculations. Physical Review B, 2006. 74(18).
    57. Bugaris, D.E. and J.A. Ibers, Syntheses and characterization of some solid-state actinide (Th, U, Np) compounds. Dalton Trans, 2010. 39(26): p. 5949-64.
    58. Tomar, N., et al., Studies on the hydrolysis of {Cu[Al(OPri)4]2}, a single source precursor for CuAl2O4 spinel. Journal of Non-Crystalline Solids, 2009. 355(52-54): p. 2657-2662.
    59. Liu, Y., et al., Study of Raman spectra for γ-Al2O3 models by using first-principles method. Solid State Communications, 2014. 178: p. 16-22.
    60. Cava, S., et al., Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Materials Chemistry and Physics, 2007. 103(2-3): p. 394-399.
    61. Li, P.G., M. Lei, and W.H. Tang, Raman and photoluminescence properties of α-Al2O3 microcones with hierarchical and repetitive superstructure. Materials Letters, 2010. 64(2): p. 161-163.
    62. Tran, T.H. and V.T. Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review. Int Sch Res Notices, 2014. 2014: p. 856592.
    63. Dar, M.A., et al., Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Applied Surface Science, 2009. 255(12): p. 6279-6284.
    64. 國立成功大學微奈米科技研究中心, New Alpha-Step Profilometer
    65. H, H.E., On a new action of the magnet on electric currents. American Journal of Mathematics, 1879. 2(3): p. 287-292.
    66. Kosel, J.S.a.J., Finite-Element Modelling and Analysis of Hall Effect and Extraordinary Magnetoresistance Effect. Finite Element Analysis - New Trends and Developments, 2012.
    67. Four-Point-Probes, Ecopia HMS-3000 Hall Measurement System.
    68. Shih, C.H. and B.H. Tseng, Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure. Physics Procedia, 2012. 32: p. 395-400.
    69. Tseng, C.H.S.a.B.H., Fabrication and characterization of p-type transparent conducting oxide CuAlO2 thin film. 2007: p. 57.
    70. Marchon, B., et al., TPD and XPS studies of O2, CO2, and H2O adsorption on clean polycrystalline graphite. Carbon, 1988. 26(4): p. 507-514.
    71. Yu, R.-S., et al., Characterization and optoelectronic properties of p-type N-doped CuAlO2 films. Applied Physics Letters, 2007. 90(19): p. 191117.
    72. Wongcharoen, N. and T. Gaewdang, Thermoelectric properties of Ni-doped CuAlO2. Physics Procedia, 2009. 2(1): p. 101-106.
    73. Durá, O.J., et al., Transport, electronic, and structural properties of nanocrystalline CuAlO2delafossites. Physical Review B, 2011. 83(4).

    無法下載圖示 校內:2020-09-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE