| 研究生: |
王暐翔 Wang, Wei-Hsiang |
|---|---|
| 論文名稱: |
孔洞氧化矽、碳材@氧化矽及矽酸鈦複合材料的合成與應用 Synthesis and Application of Porous Silica, Carbon@Silica and Titanium-Silicate Materials |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 中孔洞氧化矽 、奈米碳管@氧化矽 、奈米石墨@氧化矽 、矽酸鈦 |
| 外文關鍵詞: | mesoporous silica, carbon nanotube@mesoporous silica, nanographite@mesoporous silica, Ti-silicate |
| 相關次數: | 點閱:103 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的主旨可分為利用酸化後的矽酸鈉(Sodium silicate)為氧化矽來源,並以一鍋化的合成方式製備出孔洞氧化矽材料(Porous silica,PS)、碳材@孔洞氧化矽材料以及矽酸鈦材料。
本研究利用檸檬酸或硫酸酸化不具揮發性的矽酸鈉作為氧化矽源,搭配界面活性劑P123、具有親水官能基的PEG高分子及天然高分子明膠為有機模板合成出孔洞尺度可控制的高比表面積孔洞氧化矽材料;接著以表面活化劑明膠活化奈米碳管(Carbon nanotube,CNT)與奈米石墨(Nano-Graphite,NG),並以相同的概念製備出奈米碳管@孔洞氧化矽(CNT@PS)與奈米石墨@孔洞氧化矽(NG@PS)材料;最後以無有機模板的合成方式,利用共沉澱法及異相成核法合成出矽酸鈦中孔洞材料。
(1) 孔洞氧化矽材料
在pH ≈ 5.0的反應條件下,藉由氫鍵(Hydrogen bond)的作用力,以共聚高分子P123、PEG高分子及明膠為有機模板,搭配檸檬酸酸化的矽酸鈉水溶液為氧化矽源形成有機無機複合材料,可藉由改變水熱處理時間調控材料的孔徑尺度,以及藉由矽酸鈉濃度調控材料的粒徑尺度,並且移除有機模板後,即可製備出孔洞氧化矽材料;而以明膠合成的材料,則可以利用硫酸水溶液置換母液,並藉由100℃酸水熱處理的方式,可以製備出含有大量Si-OH官能基的高比表面積孔洞氧化矽材料。此部分的材料由於製作手法簡單、高比表面積、孔洞通透性佳及孔洞、粒徑尺度可調整等特性,在應用上具有非常大的潛力,而本實驗室製備的孔洞氧化矽材料在隔熱漆的應用上已有初步的效果。
(2) 奈米碳管@孔洞氧化矽及奈米石墨@孔洞氧化矽材料
在pH ≈ 5.0的反應條件下,利用天然高分子明膠使奈米碳管與奈米石墨具表面活化後分散於水中,並搭配檸檬酸酸化的矽酸鈉水溶液為氧化矽源,經由水熱反應後,可以合成出分散性佳且完整包覆的CNT@PS及NG@PS材料。由於CNT與NG材料本身具有很好的導熱性質,在這些材料外包覆了一層孔洞氧化矽層後,可以利用孔洞氧化矽的高比表面積與具有大量Si-OH的特性,使CNT@PS和NG@PS藉由氫鍵的方式混入封裝膠材(還氧樹酯)中,增加膠材的導熱效果。
(3) 矽酸鈦中孔洞材料
將TiCl4加入硫酸酸化的矽酸鈉水溶液中,並在pH ≈ 9.0的反應條件下,利用共沉澱法搭配水熱處理的方式,合成出高比表面積的矽酸鈦中孔洞材料;另一方面,以孔洞氧化矽為氧化矽來源,在相同的反應條件下,以異相成核的方式把Ti擔載在氧化矽的孔洞結構中,經過100℃水熱處理,也可製備出矽酸鈦中孔洞材料。而本部分合成的矽酸鈦材料對過氧化氫(H2O2)的分解反應及染料的降解反應上都具有很好的催化效果。
For the purpose to easily synthesize silica based porous materials, we provide a new strategy by using acidified sodium silicate as silica source. With this concept, we can use one-pot synthesized method combined with organic template and hydrothermal treatment method to fabricate porous silica with tunable pore size, particle size and high specific surface area. And then, by using environmental friendly polymer gelatin as surface activator for carbon nanotubes (CNT) and nanographites (NG) and acidified sodium silicate as silica source, we can use a facile one-pot method to synthesize dispersible and uniformly silica coated carbon nanotube@porous silica (CNT@PS) and nanographite@porous silica (NG@PS) materials. In the last chapter, by adding appropriate amount of NaOH(aq) into Ti source (TiCl4) mixed acidified sodium silicate and with hydrothermal treatment, the mesoporous Ti-silicate with high specific surface area and good dispersities of Ti activated sites can be formed. The mesoporous titanium-silicate with well-dispersed titanium active sites can be used as a high-performance catalyst toward decomposition of hydrogens peroxide and dyes molecules.
1. D. H. Everett, Pure Appl. Chem. 1972, 31, 578
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710
3. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 1998, 279, 548
4. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao, Angew. Chem. 2003, 115, 3254
5. A. Vinu, V. Murugesan and M. Hartmann, Chem. Mater. 2003, 15, 1385
6. H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981
7. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141
8. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
9. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552
10. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691
11. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng Shou Xiao, Angew. Chem. Int. Ed. 2001, 7, 1258
12. A. Walcarius, M. Etienne and B. Lebeau, Chem. Mater. 2003, 15, 2161.
13. T. Yokoi, H. Yoshitake and T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
14. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming, Nature, 2000, 48, 289
15. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
16. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413
17. F. Noll, M. Sumper and N. Hampp, Nano. Lett., 2002, 2, 91
18. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv. Mater. 2000, 12, 206
19. P. Jiang, J. F. Bertone and V. L. Colvin, Science. 2001, 291, 453
20. C. E. Fowler, D. Khushalani and S. Mann, Chem. Commun. 2001, 2028
21. Q. S. Huo, J. L. Feng, F. Schu¨th and G. D. Stucky, Chem. Mater. 1997, 9, 14
22. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature. 1999, 398, 223
23. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv. Mater. 2001, 13, 649
24. C. Fox, Cosmet Toiletries, 1984, 99, 28
25. D. Chandler, Nature, 2005, 437 (7059): 640-7
26. T. P. Silverstein, Journal of Chemical Education 1998, 75(1), 116
27. K. Esumi and M. Ueno, 2003, Structure-performance Relationships in Surfac -tants. 2nd ed,Vol. 122, New York: Marcel Dekker.
28. M. N. Jones and D. Chapman, 1995, Micelles, Monolayers, and Biomembranes, 89–95. New York: Wiley-Liss.
29. R. J. Stokes and D. F. Evans, 1997, Fundamentals of Interfacial Engineering, 222, New York: Wiley and Sons.
30. N. Israelachvili, S. Marcelja and R. G. Horn, Q. Rev. Biophys, 1980, 13(2), 121
31. D. J. Mithchell and B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 601
32. H. P. Lin and C. Y. Mou, Acc. Chem. Res. 2002, 35, 927-935
33. J. Kay and P. D. Weitzman, 1987, Krebs' Citric Acid Cycle: Half a Century and Still Turning, London: Biochemical Society.
34. S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392
35. N. Kröger, R. Deutzmann and M. Sumper, Science 1999, 286, 1129
36. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon and W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
37. A. Sigel, H. Sigel and R. K.O. Sigel, 2008, Biomineralization: From Nature to Application. England: Wiley.
38. Weiner, Stephen, Lowenstam, Heinz A., 1989, On Biomineralization. England: Oxford University Press.
39. J. P. Cuif, Y. Dauphin and J. E. Sorauf, 2011, Biominerals and Fossils Through Time. England: Cambridge.
40. 馬振基, 2003,奈米材料科技原理與應用。台灣,全華科技圖書股份有限公司。
41. R. I. Walton, Chem. Soc. Rev. 2002, 31, 230
42. R. A. Laudise, 1962, Hydrothermal Synthesis of Single Crystals, New Jersey: John Wiley & Sons, Inc.
43. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian and Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283
44. Y. W. Jun, J. H. Lee, J. S. Choi and J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795
45. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao and C. H. Yan, Chem. Mater. 2002, 14, 4172.
46. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
47. R. L. Penn and J. F. Banfield, Science 1998, 281, 969
48. R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta, 1999, 63, 1549
49. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert and R. L. Penn, Science 2000, 289, 751
50. K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, J. Mater.Chem. 2004, 14, 2575
51. C. H. Gu, V. Y. Jr and J.W. Grant, J. Pharm. Sci. 2001, 90, 1878
52. J. H. ter Horst, R. M. Geertman and G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277
53. X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343
54. B. M. Wen, C. Y. Liu and Y. Liu, New J. Chem. 2005, 29, 969
55. B. Cheng and E. T. Samulski, Chem. Commun. 2004, 986
56. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu and Y. Li, Cryst. Growth.Des. 2005, 5, 1801
57. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu and D. Que, Nanotechnology, 2004, 15, 622
58. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge and G. K. Wong, Chem. Mater. 2000, 12, 2268
59. J. Joo, S. G. Kwon, J. H. Yu and T. Hyeon, Adv. Mater. 2005, 17, 1873
60. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater. 2003, 15, 353
61. X. Peng, Adv. Mater. 2003, 15, 459
62. M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206
63. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Acc. Chem. Res. 1998, 31, 485
64. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angew. Chem. Int. Ed. 1997, 36, 1001
65. R. Murugavel and H. W. Roesky, Angew. Chem. Int. Ed. 1997, 36, 477
66. M. G. Clerici, G. Bellussi and U. Romano, J. Catal. 1991, 129, 159
67. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr. Pap. Am. Chem. S. 1993, 206, 57
68. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor. Mesopor. Mat. 1998, 25, 43
69. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal. 1994, 148, 569
70. M. D. Alba, Z. H. Luan and J. Klinowski, J. Phys. Chem. 1996, 100, 2178
71. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal. Lett. 1996, 37, 113
72. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater. 2001, 13, 552
73. D. R. Rolison, Science 2003, 299, 1698
74. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics. 2004, 23, 95
75. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat. 2008, 113, 562
76. M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc. 2009, 131, 18112
77. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301
78. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287
79. P. Anastas and J. C. Warner, 2006, The 12 Principles of Green Chemistry, United States Environmental Protection Agency
80. P. Alexandrids, U. Olsson and B. Lindman, Langmuir 1998, 14, 2627
81. 陳鐸文, 2012,合成各種型態、尺度、及含有金奈米粒子之中孔洞材料在液晶顯示器應用、SERS之應用。台南: 成功大學化學所。
82. S. Ijima, Nature 1991, 354, 56
83. P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Science 1999, 283, 1513
84. E. Frackowiak, K. Metenier, V. Bertagna and F. Beguin, Appl. Phys. Lett. 2000, 77, 2421.
85. A. Izadi-Najafabadi, T. Yamada, D. N. Futaba, M. Yudasaka, H. Takagi, H. Hatori, S. Iijima and K. Hata, ACS Nano 2011, 5, 811.
86. C. G. Liu, M. Liu, F. Li and H. M. Cheng, Appl. Phys. Lett. 2008, 92, 143108.
87. L. L. Zhang, R. Zhou and X. S. Zhao, J. Mater. Chem. 2010, 20, 5983.
88. K. Yang, M. Y. Gu, Y. P. Guo, X. F. Pan and G. H. Mu, Carbon 2009, 47, 1723
89. P. C. Ma, J. K. Kim and B. Z. Tang, Comp. Sci. Tech. 2007, 67,2965
90. J. Zhu, H. Q. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano and E. V. Barrera, Adv. Funct. Mater. 2004, 14, 643
91. S. Y. Wu, S. M. Yuen, C. C. Ma, C. L. Chiang, Y. L. Huang, H. H. Wu, C. C. Teng, C. C. Yang and M. H. Wei, J. Appl. Polym. Sci. 2010, 115, 3481
92. J. G. Wang, Z. P. Fang, A. J. Gu, L. H. Xu and F Liu, J. Appl. Polym. Sci. 2006, 100, 97
93. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman and R. E. Smalley, Science 2002, 297, 593.
94. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge and R. E. Smalley, Nano Lett. 2003, 3, 1379.
95. K. L. Ding, B. J. Hu, Y. Xie, G. M. An, R. T. Tao, H. G. Zhang and Z. M. Liu, J. Mater. Chem. 2009, 19, 3725
96. M. Zhang, X. H. Zhang, X. W. He, L. X. Chen, Y. K. Zhang, Mat. Lett. 2010, 64, 1383
97. M. Zhang, Y. P. Wu, X. Z. Feng, X. W. He, L. X. Chen and Y. K. Zhang, J. Mater. Chem. 2010, 20, 5835
98. 郭偉僑, 2011,以禾本科植物為氧化矽原料合成金屬矽酸鹽孔洞材料並做為水中有機物之吸附劑。台南: 成功大學化學所。
99. A. Vinu, P. Srinivasu, D.P. Sawant, S. Alam, T. Mori, K. Ariga, V.V. Balasubramanian, C. Anand, Micro. Meso. Mater. 110 (2008) 422.
100. W. H. Zhang, J. Lu, B. Han, M. Li, J. Xiu, P. Ying and C. Li, Chem. Mater. 2002, 14, 3413.
101. D. Fattakhova-Rohlfing, J. M. Szeifert, Q. Yu, V. Kalousek, J. Rathousky and T. Bein, Chem. Mater. 2009, 21, 2410
102. 陳彥文, 2011, Copper-Silicate孔洞複合性材料之合成與應用。台南: 成功大學化學所。
103. 洪維瑛, 2012,利用水熱法製備Cobalt-Silicate和Nickel-Silicate孔洞複合性材料作為吸附劑和催化觸媒。台南: 成功大學化學所。
104. 陳運穎, 2014,金屬矽酸鹽孔洞材料之合成與應用。台南: 成功大學化學所。
105. 吳宇婷, 2014,以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用