簡易檢索 / 詳目顯示

研究生: 陳怡霈
Chen, Yi-Pei
論文名稱: 阿拉伯芥中胚胎依賴性-胚乳特異性基因LBD8的功能分析
Functional analysis of Arabidopsis Embryo-dependent Endosperm-specific gene, LBD8
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
高木優
Ohme-Takagi, Masaru
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 76
中文關鍵詞: 種子發育胚胎發育依賴性基因LBD 基因轉錄因子無融合生殖
外文關鍵詞: Seed development, embryo development-dependent genes, LBD genes, transcription factor, apomixis
相關次數: 點閱:47下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數被子植物的種子發育始於「雙重受精」,即兩個精細胞分別使卵細胞和中央細胞受精,進而產生胚與胚乳。儘管胚與胚乳獨立發育,但其過程受到種子形成的共同協調。這種協同作用對於種子的正常發育至關重要,表明其中必有某些「訊號」調節胚與胚乳間的同步發育。然而,這些訊號的具體作用機制目前仍不清楚。在先前的研究中,發現了一些胚胎發育依賴的胚乳特異性基因,這些基因僅在雙重受精的種子中表達,而在僅有中央細胞受精的種子中不表達,這些基因可能是介導胚與胚乳間訊號傳遞的關鍵。我們基於轉錄組數據分析結果,選擇LBD8進行深入研究。為了分析LBD8在阿拉伯芥中的功能,我們利用CRISPR/Cas9技術建立了基因敲除系,並透過比較這些敲除系與野生型植物的表現型及基因表達模式,探討其生物學功能。結果顯示,LBD8對種子至關重要,可能直接影響其發育。本論文旨在幫助理解植物無融合生殖(apomixis)的機制,並將這些發現應用於作物育種。此外,我們也嘗試敲除水稻中的LBD8同源基因,以期加速糧食作物無融合生殖研究的進展。

    Seed development in most angiosperms initiates by double fertilization, where two sperm cells fertilize the egg cell and the central cell, producing the embryo and endosperm, respectively. Although the embryo and endosperm develop independently, their development is synchronized during seed formation. Synchronized development of embryo and endosperm is crucial for proper seed development, suggesting that signals must regulate the synchronized development between the embryo and endosperm. However, such regulatory signals have not yet been identified. Previous research has uncovered embryo development-dependent endosperm-specific genes in Arabidopsis, which are expressed only in double-fertilized seeds, but not in seeds where only the central cell is fertilized. These genes are likely to be candidates whose expression is mediated by signal transmission between the embryo and endosperm. Among them, we selected LBD8 for further study. To analyze function of LBD8, we prepared knockout lines of LBD8using CRISPR/Cas9 and compared the phenotypes of lbd8 knockout lines with wild-type plants. Results showed that seed number was drastically reduced in lbd8 when compared with that of wild type. Our regulates indicate that LBD8 is an important for normal seed development. This study aims to contribute to the understanding of the mechanisms underlying plant apomixis and to apply these findings to crop breeding. Additionally, this project attempts to knock out the homologous genes of LBD8 in rice, with the hope of accelerating research progress in apomixis for food crops.

    中文摘要 i Abstract ii 誌謝 iii Acknowledgements iv Table Contents vii Figure Contents viii Supplementary Data Contents ix Abbreviations x Introduction 1 1.1 Relationship of embryo and endosperm and their development 1 1.2 Synchronizing development mechanisms of embryo and endosperm 1 1.3 Embryo development-dependent gene expression 2 1.4 Embryo development-dependent genes, LBD family 2 Material and methods 4 2.1 Experiment design 4 2.2 Preparations of knockout lines 4 2.2.1 Construction of CRISPR/Cas9 4 2.2.2 DNA purification 5 2.2.3 E. coli transformation 5 2.2.4 Plasmid extraction 5 2.2.5 Agrobacteria transformation 6 2.2.6 Plant materials and growth conditions 6 2.2.7 Arabidopsis transformation 6 2.3 Preparation of competent cell (E. coli) 7 2.4 Preparation of Competent cell (Agrobacteria) 7 2.5 Selecting of the mutant plants 8 2.5.1 Selecting of T1 plants 8 2.5.2 Selecting of T2 plants 8 2.5.3 Selecting of T3 plants 8 2.5.4 RNA extraction 9 2.5.5 RT-PCR (reverse transcription polymerase chain reaction) 10 2.5.6 qPCR (real-time quantitative polymerase chain reaction) 10 2.6 Phenotypic analysis 11 2.6.1 Silique length 11 2.6.2 Seed number in each silique 11 2.6.3 Seed size 11 2.6.4 Seed weight 12 2.6.5 Germination rate 12 2.7 Rice transformation 12 2.7.1 Sowing 12 2.7.2 Agrobacteria preparation 13 2.7.3 Callus preparation 13 2.7.4 Callus infection 13 2.7.5 Washing 14 2.7.6 Selection 14 2.8 Bioinformatics analysis 14 2.8.1 Phylogenetic tree 14 2.8.2 Gene expression pattern data 15 2.8.3 Sequencing result analysis 15 2.9 Statistical analysis 15 2.10 Database for searching orthologues 15 Results 16 3.1 Expression pattern of LBD8 16 3.2 Functional analysis of LBD8 by using knockout lines 17 3.2.1 CRISPR/Cas9 construct 18 3.2.2 Phenotypic analysis of lbd8 plants 18 3.3 Rice orthologue 19 3.4 LBD8 orthologues in plant without seeds 19 Discussion 20 4.1 Seed development and embryo-dependent genes 20 4.2 Apomixis and embryo-dependent genes 21 4.3 LBD5: A possibly redundant gene of LBD8 21 4.4 Comparisons of LBD genes between Arabidopsis and rice 22 4.5 The genes found only in seed plants 23 Conclusions 24 References 25 Tables 29 Figures 40 Supplementary data 62

    黃祥益,(2008)。無融合生殖在植物生殖中的角色。高雄區農業改良場研究彙報,19 (2),58-67。
    Abdul M. Chaudhury, L. M., Celia Miller, Stuart Craig, Elizabeth S. Dennis, and W. James Peacock. (1997). Fertilization-independent seed development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 94(8), 4223. https://doi.org/https://doi.org/10.1073/pnas.94.8.4223
    Asmamaw, M., & Zawdie, B. (2021). Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics, 15, 353-361. https://doi.org/10.2147/BTT.S326422
    Belmonte, M. F., Kirkbride, R. C., Stone, S. L., Pelletier, J. M., Bui, A. Q., Yeung, E. C., Hashimoto, M., Fei, J., Harada, C. M., Munoz, M. D., Le, B. H., Drews, G. N., Brady, S. M., Goldberg, R. B., & Harada, J. J. (2013). Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci U S A, 110(5), E435-444. https://doi.org/10.1073/pnas.1222061110
    Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol, 62(3), 293-300. https://doi.org/10.1128/jb.62.3.293-300.1951
    Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., & Görlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell, 13(7), 1499-1510. https://doi.org/10.1105/tpc.010011
    Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16(6), 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
    d'Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., & Mercier, R. (2009). Turning meiosis into mitosis. PLoS Biol, 7(6), e1000124. https://doi.org/10.1371/journal.pbio.1000124
    Daniel Grimanelli, O. L., Enrico Perotti and Ueli Grossniklaus. (2001). Developmental genetics of gametophytic apomixis. TRENDS in Genetics, 17.
    Doll, N. M., & Ingram, G. C. (2022). Embryo-Endosperm Interactions. Annu Rev Plant Biol, 73, 293-321. https://doi.org/10.1146/annurev-arplant-102820-091838
    Fiume, E., & Fletcher, J. C. (2012). Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell, 24(3), 1000-1012. https://doi.org/10.1105/tpc.111.094839
    Friedrich, J., Dandekar, T., Wolf, M., & Müller, T. (2005). ProfDist: a tool for the construction of large phylogenetic trees based on profile distances. Bioinformatics, 21(9), 2108-2109. https://doi.org/10.1093/bioinformatics/bti289
    Guo, B. J., Wang, J., Lin, S., Tian, Z., Zhou, K., Luan, H. Y., Lyu, C., Zhang, X. Z., & Xu, R. G. (2016). A genome-wide analysis of the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family in barley (Hordeum vulgare L.). J Zhejiang Univ Sci B, 17(10), 763-774. https://doi.org/10.1631/jzus.B1500277
    Hehenberger, E., Kradolfer, D., & Kohler, C. (2012). Endosperm cellularization defines an important developmental transition for embryo development. Development, 139(11), 2031-2039. https://doi.org/10.1242/dev.077057
    Hirokazu Tanaka, H. O., Maki Kondo, Ikuko Hara-Nishimura, Mikio Nishimura, Chiyoko Machida, and Yasunori Machida. (2001). A subtilisin-like serine protease is required for epidermal surface formation in Arabidopsis embryos and juvenile plants. Development 128(23), 8. https://doi.org/https://doi.org/10.1242/dev.128.23.4681
    Jia, R., Li, C., Wang, Y., Qin, X., Meng, L., & Sun, X. (2022). Genome-Wide Analysis of LBD Transcription Factor Genes in Dendrobiumcatenatum. Int J Mol Sci, 23(4). https://doi.org/10.3390/ijms23042089
    Jin, Y., & Marquardt, S. (2020). Dual sgRNA-based Targeted Deletion of Large Genomic Regions and Isolation of Heritable Cas9-free Mutants in Arabidopsis. Bio Protoc, 10(20), e3796. https://doi.org/10.21769/BioProtoc.3796
    K. J. Ross, P. F. G. H. J. (1996). A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Research, 4, 507-516.
    KB, N. (1997). GeneDoc: analysis and visualization of genetic variation. EMBnet news, 4, 1-4.
    Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
    Lafon-Placette, C., & Köhler, C. (2014). Embryo and endosperm, partners in seed development. Current Opinion in Plant Biology, 17, 64-69. https://doi.org/10.1016/j.pbi.2013.11.008
    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
    Liliana M Costa, E. M., Mesfin Tesfaye, Kevin A T Silverstein, Masashi Mori, Yoshitaka Umetsu, Sophie L Otterbach, Ranjith Papareddy, Hugh G Dickinson, Kim Boutiller, Kathryn A VandenBosch, Shinya Ohki, José F Gutierrez-Marcos. (2014). Central Cell–Derived Peptides Regulate Early Embryo Patterning in Flowering Plants. Science, 344(6180), 4. https://doi.org/10.1126/science.1243005
    Matsumura, Y., Iwakawa, H., Machida, Y., & Machida, C. (2009). Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J, 58(3), 525-537. https://doi.org/10.1111/j.1365-313X.2009.03797.x
    Mieulet, D., Jolivet, S., Rivard, M., Cromer, L., Vernet, A., Mayonove, P., Pereira, L., Droc, G., Courtois, B., Guiderdoni, E., & Mercier, R. (2016). Turning rice meiosis into mitosis. Cell Res, 26(11), 1242-1254. https://doi.org/10.1038/cr.2016.117
    Milutinovic, M., Lindsey, B. E., 3rd, Wijeratne, A., Hernandez, J. M., Grotewold, N., Fernandez, V., Grotewold, E., & Brkljacic, J. (2019). Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation. Plant Sci, 285, 99-109. https://doi.org/10.1016/j.plantsci.2019.04.007
    Pignocchi, C., Minns, G. E., Nesi, N., Koumproglou, R., Kitsios, G., Benning, C., Lloyd, C. W., Doonan, J. H., & Hills, M. J. (2009). ENDOSPERM DEFECTIVE1 Is a Novel Microtubule-Associated Protein Essential for Seed Development in Arabidopsis. Plant Cell, 21(1), 90-105. https://doi.org/10.1105/tpc.108.061812
    Robert B. Goldberg, G. d. P., Ramin Yadegari. (1994). Plant Embryogenesis: Zygote to Seed. SCIENCE, 266.
    Ron, M., Alandete Saez, M., Eshed Williams, L., Fletcher, J. C., & McCormick, S. (2010). Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev, 24(10), 1010-1021. https://doi.org/10.1101/gad.1882810
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
    Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., & Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nat Genet, 37(5), 501-506. https://doi.org/10.1038/ng1543
    Shuai, B., Reynaga-Pena, C. G., & Springer, P. S. (2002). The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 129(2), 747-761. https://doi.org/10.1104/pp.010926
    Song, J., Xie, X., Chen, C., Shu, J., Thapa, R. K., Nguyen, V., Bian, S., Kohalmi, S. E., Marsolais, F., Zou, J., & Cui, Y. (2021). LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nat Commun, 12(1), 3963. https://doi.org/10.1038/s41467-021-24234-1
    Song, J., Xie, X., Cui, Y., & Zou, J. (2021). Endosperm-Embryo Communications: Recent Advances and Perspectives. Plants (Basel), 10(11). https://doi.org/10.3390/plants10112511
    Takasaki, H., Ikeda, M., Hasegawa, R., Zhang, Y., Sakamoto, S., Maruyama, D., Mitsuda, N., Kinoshita, T., & Ohme-Takagi, M. (2022). Elongation of Siliques Without Pollination 3 Regulates Nutrient Flow Necessary for Embryogenesis. Plant and Cell Physiology, 64(1), 117-123. https://doi.org/10.1093/pcp/pcac151
    Tamura K., N. M., and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 5. https://doi.org/https://doi.org/10.1073/pnas.0404206101
    Underwood, C. J., & Mercier, R. (2022). Engineering Apomixis: Clonal Seeds Approaching the Fields. Annu Rev Plant Biol, 73, 201-225. https://doi.org/10.1146/annurev-arplant-102720-013958
    Wei, M., Li, H., Wang, Q., Liu, R., Yang, L., & Li, Q. (2023). Genome-wide identification and expression profiling of B3 transcription factor genes in Populus alba x Populus glandulosa. Front Plant Sci, 14, 1193065. https://doi.org/10.3389/fpls.2023.1193065
    Xiong, H., Wang, W., & Sun, M. X. (2021). Endosperm development is an autonomously programmed process independent of embryogenesis. Plant Cell, 33(4), 1151-1160. https://doi.org/10.1093/plcell/koab007
    Yan, D., Duermeyer, L., Leoveanu, C., & Nambara, E. (2014). The functions of the endosperm during seed germination. Plant Cell Physiol, 55(9), 1521-1533. https://doi.org/10.1093/pcp/pcu089
    Yang, S., Johnston, N., Talideh, E., Mitchell, S., Jeffree, C., Goodrich, J., & Ingram, G. (2008). The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development, 135(21), 3501-3509. https://doi.org/10.1242/dev.026708
    Zhang, Y., Li, Z., Ma, B., Hou, Q., & Wan, X. (2020). Phylogeny and Functions of LOB Domain Proteins in Plants. Int J Mol Sci, 21(7). https://doi.org/10.3390/ijms21072278
    Zhang, Y., Maruyama, D., Toda, E., Kinoshita, A., Okamoto, T., Mitsuda, N., Takasaki, H., & Ohme-Takagi, M. (2023). Transcriptome analyses uncover reliance of endosperm gene expression on Arabidopsis embryonic development. FEBS Lett, 597(3), 407-417. https://doi.org/10.1002/1873-3468.14570

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE