| 研究生: |
黃宏欽 Huang, Hung-Chin |
|---|---|
| 論文名稱: |
超疏水塗層製備技術及其性質之研究 |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 超疏水 、自清潔 |
| 外文關鍵詞: | self-cleaning, superhydrophobic |
| 相關次數: | 點閱:60 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般欲使物體具有超疏水的特性,常需要使物體同時具有粗糙之表面及低表面能與粗糙的表面。本研究利用同時具備低表面能高分子(perfluoro-polymer)與附著力促進劑(adhesion promoter)的共聚合物(copolymer)來降低物體表面能及提升塗料與基板之接合強度,並且添加不同固粒含量的奈米級軟鋁石(boehmite)以提升物體表面之粗糙度。結果發現隨著固粒含量的提高,塗層表面上所覆蓋軟鋁石的比例亦漸漸提高,使得塗層的硬度可由未添加固體粒子的6B(B0T0Z6)上升達2H(B8T0Z6),而且表面粗糙度亦上升到30nm。由於粗糙度的提昇,而使樣品的接觸角上升,其中B8T0Z6的接觸角可達155°,光穿透度亦有50%。本研究中亦發現軟鋁石在溶劑中的分散情形對塗層的微結構有顯著的影響,若在疏水改質之前先經過分散前處理會使軟鋁石在塗層中的排列較整齊,塗層表面較緻密且無凝聚體的產生,而使得塗層硬度提升至3H。此外塗層表面粗糙度下降到9nm左右,使得接觸角下降至115°。
本研究藉由在原先較大的軟鋁石粒子中填入較小的二氧化鈦粒子,提高微孔洞的比率,並利用其光觸媒效應來分解較不親水的有機污染物。結果顯示微孔洞的比率的確會隨二氧化鈦粒子之添加而提升,此外凝聚情形亦會隨著二氧化鈦添加量的增加而更加嚴重。當樣品表面粗糙度均在30nm左右時,微孔洞的比率增大的確會使接觸角增加;不過當粗糙度達50nm時,其雖具有較小之微孔洞比率但其接觸角卻仍大於粗糙度為30nm之樣品,顯示此時接觸角主要是受粗糙度的影響。
硬質塗層在塑膠基板的應用對於塗層硬度、光穿透率的要求較嚴格,而對疏水性質僅要求其接觸角達110°以上;本研究中利用有機-無機混成材料配合自分層的概念,在塑膠基板上製作抗磨耗之疏水塗層,其硬度可達4~5H,並同時具有疏水的效果(接觸角為115°)。
Super-hydrophobic surfaces require a large surface roughness and a low surface energy. In this study, the copolymer containing hydrophobic perfluoro and adhesion promoter was applied to enhance the hydrophobicity and nano-sized boehmite was employed to increase the roughness of the coating.
The results obtained in this study are as bellows:
1. The hardness of the coatings increased from 6B to 2H with increasing boehmite addition from 0 to 8 wt% and the surface roughness increased up to 30 nm, which resulted in increasing the contact angle of the coating. The contact angle and the transmittance of the visible light for the coating with the addition of 8 wt% boehmite were 155o and 50% respectively. The dispersion pretreatment before hydrophobic modification would result in the change of the microstructure of the coatings, which would become denser and no agglomeration. Compared with the coating without the dispersion pretreatment, the surface roughness of the coating with dispersion pretreatment decreased from 31 nm to 9 nm, which led to the decrease of the contact angle from 155o to 115o and the increase of the hardness from 2H to 3H.
2. According to the Furnas’ model, addition of small particles of anatase in the large particles of boehmite could lead to increase the ratio of micropores. Furthermore, the strong oxidation ability of the anatase with excellent self-cleaning properties could be used to decompose organic contaminants. The addition of anatase particles in the coating led to the increase of the ratio of micropores and agglomeration. When the roughness of the coatings were around 30 nm, the contact angle of the coatings increased with increasing the volume fraction of micropores. The contact angles of the samples with the roughness about 50 nm were greater than those of the samples with the roughness about 30 nm, although the volume fraction of micropores for the former were smaller than latter.
3. For the hard coating applied in the plastic substrates, the main requirements are higher hardness and transparency, and then the contact angle above 110o. In this study the concepts of inorganic-organic hybrid materials and self-demixing were successfully used to make a coating on PET substrates which possessed not only high hardness (4-5 H) but hydrophobicity (115o).
【1】C.T. Hsieh, J.M. Chen, R.R. Kuo, T.S. Lin, C.F. Wu, “Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles,” Applied Surface Science, 318-326, 240(2005)
【2】W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, 1-8, 202(1997)
【3】L. Feng, S. Li, Y. Li, H, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, “Super-Hydrophobic Surfaces: From Natural To Artificial,” Advanced Materials, 1857-1860, 14(2002)
【4】http://www.basf.de/
【5】www.botanik.unibonn.de/system/lotus/en/prinzip_html.html
【6】http://www.pcimag.com/
【7】K.H. Haas, H. Wolter, “Synthesis, properties and applications of inorganic-organic copolymers,” Current Opinion in Solid State and Material Science, 571-580, 4(1999)
【8】G. Kickelbick, “Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale,” Progress in Polymer Science, 83-114, 28(2003)
【9】R. Kasemann, H.k. Schmidt, E. Wintrich, “A New Type of A Sol-Gel-Derived Inorganic-Organic Nanocomposite,” Materials Research Society, 915-921, 346(1994)
【10】A. N. Khramov, V. N. Balbyshev, N. N. Voevodin, M. S. Donley, “Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes,” Progress in Organic Coatings, 207-213, 47(2003)
【11】R. –P. Winkler, E. Arpac, H. Schirra, I. Wegner, H. Schmidt,”Aqueous wet coatings for transparent plastic glazing,” Thin Solid Films, 209-211, 351(1999)
【12】H.K. Schmidt, E. Arpac, H. Schirra, S. Sepeur, G. Jonschker, ”Aqueous sol-gel derived nanocomposite coating materials,” Material. Research Society, 297-308, 519(1998)
【13】H.K. Schmidt, “Nanoparticles by chemical synthesis, processing to materials and innovative applications,” Applied, Organometallic. Chemistry, 331-343, 15(2001)
【14】陳忠吾、鄭凱元、張艾民、張木水、張智超,”撥水性奈米塑膠薄膜之研究”
【15】A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate,” Advanced Material, 1365-1368, 16(1999)
【16】K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, “Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method” Chemistry of materials, 590-592, 12(2000)
【17】W.C., Alexander Y. Fadeev, M.C. Hsieh, D.Oner, J. Youngblood, T.J. McCarthy, “Ultrahydrophobic and ultraalyophobic surface: some comments and examples,” Langmuir, 3395-3399, 15(1999)
【18】A. Nakajima, K. Hashimoto, T. Watanabe, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties,” Langmuir, 7044-7047, 16 (2000)
【19】徐世昌,科學發展 354(2002)
【20】N.A. Patankar, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, 1249-1253, 19 (2003)
【21】R. I. Zakharchenya, “Influence of peptization on the properties of alumina produced from boehmite sols,” Journal of Sol-Gel Science and Technology, 179-186, 6 (1996)
【22】J. S. Reed, “Principles of Ceramic Processing”, John Wiley and Sons, Inc, 219-220
【23】S.C.S. Lai,” Mimicking nature: physical basis and artificial sythesis of the lotus-effect”
【24】T.P. Chou, G. Cao, “Adhesion of Sol-Gel-Derived Organic-Inorganic Hybrid Coatings on Polyester,” Journal of Sol-Gel Science and Technology, 31-41, 27(2003)
【25】H. K. Schmidt, E. Geiter, M. Mennig, H. Krug, C. Becker and R. –P. Winkler, “The Sol-Gel Process for Nano-Technologies: New Nanocomposites with Interesting Optical and Mechanical Properties,” Journal of Sol-Gel Science and Technology, 397-404, 13(1998)
【26】S. Obi, M. T. Gale, A. Kuoni, N. De Rooij, “Replication of optical MEMS structures in sol–gel materials,” Microelectronic Engineering, 157-160, 73-74(2004)
【27】B. Lebeau, C. Sanchez, “Sol-gel derived hybrid inorganic-organic nanocomposites for optics,”Current Opinion in Solid State and Material Science, 11-23, 4(1999)
【28】R. L. Ballard, J.P. Williams, J. M. Njus, B. R. Kiland, M. D. Soucek, “Inorganic–organic hybrid coatings with mixed metal oxides,” European Polymer Journal, 381-398, 37(2001)
【29】R. Kasemann, H.K. Schmidt, U. S. Patent US 6228921 B1
【30】B. S. Hong, J. H. Han, Y. J. Cho, M. S. Park, T. Dolukhanyan, C. Sung, “Endurable water-repellent glass for automobiles,” Thin Solid Films, 274-278, 351(1999)
【31】H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, “Optically transparent superhydrophobic silica-based films, Thin Solid Films, 37-43, 472(2005)
【32】Y.L. Lee, “The wettability of solid surfaces modified by vacuum deposition of stearic acid,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 221-229, 155(1999)
【33】R. Bloosty, “Self-cleaning surfaces, virtual realities,” Nature Materials, 301-306, 2(2003)
【34】P. Gould, “Smart, clean surfaces,” Materials Today, 44-48, November 2003
【35】E. Nun, M. Oles, B. Schleich, “Lotus-effect surfaces,” Macromollecular Symposia, 677-682, 187(2002)