簡易檢索 / 詳目顯示

研究生: 劉于甄
Liu, Yu-Chen
論文名稱: 探討第一型大麻素受體在攻擊行為扮演的角色
Role of endocannabinoid type 1 receptor in impulsive aggression
指導教授: 簡伯武
Gean, Po-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 90
中文關鍵詞: 攻擊行為CB1受體急性壓力
外文關鍵詞: aggression, acute stress, CB1 receptor, Endocannabinoid
相關次數: 點閱:55下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經心理疾病患者在受到壓力的狀況下容易引發突發性的攻擊行為,流行病學的相關數據也表示早期生活壓力對成年後對於壓力的耐受性有顯著的影響。同時也發現在美國通過醫療用大麻合法化法案的州,其殺人和攻擊的犯罪率似乎有下降的趨勢。在人體內也有會自發生成的內源性大麻素,內源性大麻素與大麻葉中的大麻素最大的不同點在於內源性大麻素沒有大麻素的成癮性以及情緒上的副作用,而只有與大麻素相似的醫療成份。人體內表現最多的內源性大麻素主要是花生四烯酸乙醇胺和花生四烯酸甘油胺,並且具有兩種受體,稱為CB1和CB2受體。CB1在中樞神經系統中最豐富,並且會抑制腺苷酸環化酶作用。此外,內源性大麻素逆行刺激突觸前CB1受體,然後抑制鈣離子通道活化或刺激鉀離子通道,從而減少神經遞質的釋放。臨床前研究報導,CB1受體的受損增加了囓齒類動物暴力行為的發生。此外,許多實驗研究表明CB1受體功能改變會影響情緒控制。所以我們欲研究CB1受體在面對急性壓力下是否能夠調節攻擊行為。在本研究中,我們使用斷奶後社會隔離的動物模型來誘導小鼠的攻擊行為。相較於群居小鼠,隔離小鼠只表現較多的威嚇行為,而無直接的咬嚙攻擊。如進一步給予急性壓力,則可發現隔離小鼠會明顯用咬的攻擊BALB/c小鼠。我們在急性壓力前注入利用腹腔注射CB1受體致效劑ACPA或WIN-55,212-2 (CB1受體致效劑)後,隔離小鼠明顯減少異常攻擊行為,效果可以持續24小時。但在群居小鼠注射CB1受體致效劑後並沒有明顯的變化。由於腹側海馬迴會調節邊緣系統並影響主要調控攻擊行為的下丘腦。我們利用腦顯微手術將ACPA或WIN-55,212-2 (CB1受體致效劑)在急性壓力前注入隔離小鼠的海馬迴內,結果發現明顯減少異常攻擊行為。相反,沒有參與攻擊行為的丘腦注入致效劑後沒有行為上的改變。而利用shRNA技術減少隔離小鼠海馬迴內的CB1受體蛋白表現後,也發現隔離小鼠的攻擊行為明顯上升。此外,我們發現隔離小鼠的CB1蛋白表現量與群居小鼠相比沒有差異。CB1會表現在於隔離小鼠腹側海馬中的glutamate神經元或GABA神經元。我們還發現CB1受體致效劑治療改變了神經傳遞物質的濃度,它增加了血清素濃度並降低了多巴胺濃度。CB1受體致效劑治療還增加ERK和p70S6K磷酸化。CB1受體致效劑治療24小時後,ERK和p70S6K磷酸化會回復到基礎值。接下來,我們通過CB1敲除實驗再次證實隔離小鼠中的CB1受體。但利用shRNA技術減少群居小鼠海馬迴內的CB1受體蛋白表現後,群居小鼠的攻擊行為並沒有改變。總結上述的實驗結果,面對壓力時隔離小鼠易有攻擊行為,之後更進一步去操弄海馬迴內的CB1受體,我們發現海馬迴內CB1受體在遭受急性壓力的狀況下的會調節攻擊行為,使社會隔離小鼠減少攻擊行為。通過控制CB1R改善攻擊性行為可能為治療精神病理學開闢了一個新方向。

    Accumulating epidemiological evidence shows that early life stress has long-term effects on the susceptibility to subsequent stress exposure during adulthood. Previous reports from human studies suggest that early life stress significantly contributes to the development of excessive and impulsive aggression. Moreover, statistical results show that medical marijuana legalization in the United States may be correlated with a reduction in homicide and assault rates. There are also endogenous cannabinoids that can synthetize in the human body. The biggest difference between endocannabinoids and cannabinoids in cannabis is that endocannabinoids have no addictive and emotional side effects of cannabinoids. Only medical ingredients similar to cannabinoids. Endocannabinoids, endogenous cannabinoid, are mainly anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and have two G protein coupled receptors, known as the cannabinoid type 1 (CB1R) and type 2 receptors (CB2R). CB1R is most abundant in the central nervous system, and couples to G protein type Gi/o that inhibits adenylate cyclase. Moreover, endocannabinoids retrogradely activate presynaptic CB1R and then inhibit voltage-activated Ca2+ channels or stimulate inwardly rectifying K+ channels, which reduce neurotransmitter releases. Preclinical studies reported that the deletion of CB1R increased the occurrence of violent behaviors in rodent. Moreover, numerous experimental studies have shown that the endocannabinoid system is implicated in the control of emotional behavior by functionally altering CB1R.
    In the present study, to investigate the role of CB1R to the regulation of the response to acute stress in aggression, we used the animal model of post-weaning social isolation to induce attack behaviors in mice. Socially isolated (SI) mice rather than group housing (GH) mice performed attack behaviors in the resident-intruder test following foot-shocks. After the intraperitoneal injection with the CB1R agonist ACPA (5 mg/kg) or WIN-55,212-2 (0.5 mg/kg), SI mice decreased levels of attack behaviors than vehicle control. Anti-aggressive effect kept to 24 hours. Moreover, the ventral hippocampus regulates the limbic system and projects to hypothalamic nuclei, which is well known brain area in attack behaviors. Intra-ventral hippocampus infusion of CB1R agonist showed lower levels of attack behaviors compared with vehicle control. In contrast, Intra-thalamic infusion which is not involved in aggression brain of CB1R agonists had no effects. Furthermore, we found that the CB1 protein level of SI mice had no difference compared to GH mice. CB1R was co-localized in the glutamatergic neuron or GABAergic neuron in ventral hippocampus of SI mice. We also found that CB1 agonist treatment changed neurotransmitters concentration, it increased 5-HT concentration and decreased dopamine concentration. CB1 agonist treatment also increased ERK and p70S6K phosphorylation. After treated for 24 hours, ERK and p70S6K phosphorylation reverse to basal level. Next, we confirmed CB1 receptor in SI mice again by CB1 knockdown experiment. We used western blotting analysis and Immunofluorescence experiment to confirm knockdown result of CB1. Knockdown of CB1 with small hairpin interfering RNA aggravates attack behaviors in SI mice with acute stress. Knockdown of CB1 with small hairpin interfering RNA did not affect attack behaviors in GH mice with acute stress. Taken together, we found that CB1R agonist treatment reduced attack behaviors under the acute stress-induced, but on the contrary knockdown of CB1R increased attack behaviors under the acute stress-induced.
    Amelioration of aggressive behaviors by controlling CB1R may open a new direction for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.

    Abstract in Chinese………………………………………………………………..……. 1 Abstract in English……………………………………………………………………… 4 Contents ………………………………………………………………………………… 10 List of figures …………………………………………………………………………… 11 Abbreviations…………………………………………………………………………… 14 Introduction………………………………………………………………….………….. 17 Specific Aims………………………………………………………………….…………29 Materials and methods…….………………………………………………...……………31 Results ……………………………....……………………………………………………40 Discussion……………………………………………………..………………………… 56 References ………………………………………………………………………...……. 61

    A Dodge K, E Lansford J, Burks V, E Bates J, S Pettit G, Fontaine R, Price J (2003) Peer Rejection and Social Information-Processing Factors in the Development of Aggressive Behavior Problems in Children.
    Ahlers ST, Richardson R Administration of dexamethasone prior to training blocks ACTH-induced recovery of an extinguished avoidance response. Behav Neurosci 99:760-764. (1985)
    Bouwknecht JA, Hijzen TH, van der Gugten J, Maes RA, Hen R, Olivier B Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol Psychiatry 49:557-568. (2001)
    Brunner D, Hen R Insights into the neurobiology of impulsive behavior from serotonin receptor knockout mice. Ann N Y Acad Sci 836:81-105. (1997)
    Christian KM, Miracle AD, Wellman CL, Nakazawa K Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26-36. (2011)
    Cilia J, Hatcher PD, Reavill C, Jones DN Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats: an update. Psychopharmacology (Berl) 180:57-62. (2005)
    Coccaro EF, Fanning JR, Phan KL, Lee R Serotonin and impulsive aggression. CNS Spectr 20:295-302. (2015)
    Dalton GD, Howlett AC Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells. Br J Pharmacol 165:2497-2511. (2012)
    Davidson RJ, McEwen BS Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci 15:689-695. (2012)
    de Boer SF, van der Vegt BJ, Koolhaas JM Individual variation in aggression of feral rodent strains: a standard for the genetics of aggression and violence? Behav Genet 33:485-501. (2003)
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946-1949. (1992)
    Di Marzo V, Bifulco M, De Petrocellis L The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 3:771-784. (2004)
    Einon DF, Morgan MJ A critical period for social isolation in the rat. Dev Psychobiol 10:123-132. (1977)
    Fanselow MS, Dong H-W Are The Dorsal and Ventral Hippocampus functionally distinct structures? Neuron 65:7. (2010)
    Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111. (2008)
    Fone KC, Porkess MV Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087-1102. (2008)
    Gamage TF, Lichtman AH The endocannabinoid system: role in energy regulation. Pediatr Blood Cancer 58:144-148. (2012)
    Glenn AL, Raine A Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour. Nat Rev Neurosci 15:54-63. (2014)
    Gregg TR, Siegel A Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 25:91-140. (2001)
    Haller J, Toth M, Halasz J, De Boer SF Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88:173-182. (2006)
    Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 100:749-768. (2000)
    Henke PG Hippocampal pathway to the amygdala and stress ulcer development. Brain Res Bull 25:691-695. (1990)
    Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563-583. (1991)
    Herman JP, Ostrander MM, Mueller NK, Figueiredo H Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201-1213. (2005)
    Hildyard KL, Wolfe DA Child neglect: developmental issues and outcomes. Child Abuse Negl 26:679-695. (2002)
    Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D Similar patterns of cortical expansion during human development and evolution. Proceedings of the National Academy of Sciences 107:13135. (2010)
    Hillard CJ Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 61:3-18. (2000)
    Howlett K, Koetters T, Edrington J, West C, Paul S, Lee K, Aouizerat BE, Wara W, Swift P, Miaskowski C Changes in sexual function on mood and quality of life in patients undergoing radiation therapy for prostate cancer. Oncol Nurs Forum 37:E58-66. (2010)
    Jenniches I, Ternes S, Albayram O, Otte DM, Bach K, Bindila L, Michel K, Lutz B, Bilkei-Gorzo A, Zimmer A Anxiety, Stress, and Fear Response in Mice With Reduced Endocannabinoid Levels. Biol Psychiatry 79:858-868. (2016)
    Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309-380. (2009)
    Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535-538. (1996)
    Lai MK, Chen CP, Hope T, Esiri MM Hippocampal neurofibrillary tangle changes and aggressive behaviour in dementia. Neuroreport 21:1111-1115. (2010)
    Lapiz MD, Fulford A, Muchimapura S, Mason R, Parker T, Marsden CA Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission. Neurosci Behav Physiol 33:13-29. (2003)
    Lesch KP, Merschdorf U Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci Law 18:581-604. (2000)
    Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221-226. (2011)
    Lin H-C, Mao S-C, Su C-L, Gean P-W The Role of Prefrontal Cortex CB1 Receptors in the Modulation of Fear Memory. Cerebral Cortex 19:165-175. (2009)
    Loeber R, Stouthamer-Loeber M Development of juvenile aggression and violence. Some common misconceptions and controversies. Am Psychol 53:242-259. (1998)
    Luecken LJ, Lemery KS Early caregiving and physiological stress responses. Clin Psychol Rev 24:171-191. (2004)
    Lupien SJ, McEwen BS, Gunnar MR, Heim C Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434-445. (2009)
    Lyketsos Oa Aggression and violence, in Textbook of Psychosomatic Medicine: Psychiatric Care of the Medically Ill (Levenson J, editor. ed) American Psychiatric Publishing:pp 153–174. (2011)
    Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253-264. (2011)
    Marguerite V Serotonergic inhibition of mouse-killing behaviour in the rat: Localization of the brain structures involved. Aggressive Behavior 8:208-211. (1982)
    Martin CA, Kelly TH, Rayens MK, Brogli BR, Brenzel A, Smith WJ, Omar HA Sensation seeking, puberty, and nicotine, alcohol, and marijuana use in adolescence. J Am Acad Child Adolesc Psychiatry 41:1495-1502. (2002)
    McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 22:1300-1312. (2012)
    Meyer JM, Cummings MA, Proctor G, Stahl SM Psychopharmacology of Persistent Violence and Aggression. Psychiatr Clin North Am 39:541-556. (2016)
    Michael L THE SELF IN SELF-CONSCIOUS EMOTIONS. Monographs of the Society for Research in Child Development 57:85-95. (1992)
    Miczek KA, O'Donnell JM Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and L-dopa. Psychopharmacology (Berl) 57:47-55. (1978)
    Muchimapura S, Fulford AJ, Mason R, Marsden CA Isolation rearing in the rat disrupts the hippocampal response to stress. Neuroscience 112:697-705. (2002)
    Nelson RJ, Trainor BC Neural mechanisms of aggression. Nat Rev Neurosci 8:536-546. (2007)
    Olivier B, Mos J, van Oorschot R, Hen R Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28 Suppl 2:80-90. (1995)
    Patel S, Hillard CJ Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther 318:304-311. (2006)
    Pattij T, Broersen LM, Peter S, Olivier B Impulsive-like behavior in differential-reinforcement-of-low-rate 36 s responding in mice depends on training history. Neuroscience letters 354:169-171. (2004)
    Pattij T, Broersen LM, van der Linde J, Groenink L, van der Gugten J, Maes RAA, Olivier B Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice. Behavioural brain research 141:137-145. (2003)
    Powell SB, Geyer MA, Preece MA, Pitcher LK, Reynolds GP, Swerdlow NR Dopamine depletion of the nucleus accumbens reverses isolation-induced deficits in prepulse inhibition in rats. Neuroscience 119:233-240. (2003)
    Radaelli D, Poletti S, Dallaspezia S, Colombo C, Smeraldi E, Benedetti F Neural responses to emotional stimuli in comorbid borderline personality disorder and bipolar depression. Psychiatry Res 203:61-66. (2012)
    Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R, Buhot M-C, Hen R 5-HT1B receptor knock out — behavioral consequences. Behavioural Brain Research 73:305-312. (1995)
    Rodriguez-Arias M, Navarrete F, Daza-Losada M, Navarro D, Aguilar MA, Berbel P, Minarro J, Manzanares J CB1 cannabinoid receptor-mediated aggressive behavior. Neuropharmacology 75:172-180. (2013)
    Rossi R, Lanfredi M, Pievani M, Boccardi M, Beneduce R, Rillosi L, Giannakopoulos P, Thompson PM, Rossi G, Frisoni GB Volumetric and topographic differences in hippocampal subdivisions in borderline personality and bipolar disorders. Psychiatry Res 203:132-138. (2012)
    Ruocco AC, Amirthavasagam S, Zakzanis KK Amygdala and hippocampal volume reductions as candidate endophenotypes for borderline personality disorder: a meta-analysis of magnetic resonance imaging studies. Psychiatry Res 201:245-252. (2012)
    Sahay A, Hen R Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110-1115. (2007)
    Sakaue M, Ago Y, Baba A, Matsuda T The 5-HT1A receptor agonist MKC-242 reverses isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology (Berl) 170:73-79. (2003)
    Sarrieau A, Sharma S, Meaney MJ Postnatal development and environmental regulation of hippocampal glucocorticoid and mineralocorticoid receptors. Developmental Brain Research 43:158-162. (1988)
    Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875-1878. (1994)
    Silva-Gomez AB, Rojas D, Juarez I, Flores G Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128-136. (2003)
    Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585-601. (2011)
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458-461. (2011)
    Springer BA, Marin R, Cyhan T, Roberts H, Gill NW Normative values for the unipedal stance test with eyes open and closed. J Geriatr Phys Ther 30:8-15. (2007)
    Strange BA, Witter MP, Lein ES, Moser EI Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655-669. (2014)
    Strangman NM, Patrick SL, Hohmann AG, Tsou K, Walker JM Evidence for a role of endogenous cannabinoids in the modulation of acute and tonic pain sensitivity. Brain Res 813:323-328. (1998)
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89-97. (1995)
    Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177-1188. (2011)
    Takahashi A, Miczek KA Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3-44. (2014)
    Ulrich-Lai YM, Herman JP Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397-409. (2009)
    Uriguen L, Perez-Rial S, Ledent C, Palomo T, Manzanares J Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46:966-973. (2004)
    Valverde O, Torrens M CB1 receptor-deficient mice as a model for depression. Neuroscience 204:193-206. (2012)
    van Erp AMM, Miczek KA Aggressive Behavior, Increased Accumbal Dopamine, and Decreased Cortical Serotonin in Rats. The Journal of Neuroscience 20:9320-9325. (2000)
    Varty GB, Powell SB, Lehmann-Masten V, Buell MR, Geyer MA Isolation rearing of mice induces deficits in prepulse inhibition of the startle response. Behav Brain Res 169:162-167. (2006)
    Veenema AH Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497-518. (2009)
    Weidenfeld J, Feldman S, Mechoulam R Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo-pituitary-adrenal axis in the rat. Neuroendocrinology 59:110-112. (1994)
    Welberg LA, Seckl JR Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 13:113-128. (2001)
    Widom CS Does violence beget violence? A critical examination of the literature. Psychol Bull 106:3-28. (1989)
    Zou S, Kumar U Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci 19. (2018)

    下載圖示 校內:2022-07-16公開
    校外:2022-07-16公開
    QR CODE