| 研究生: |
張晏綾 Chang, Yan-Ling |
|---|---|
| 論文名稱: |
鈰基金屬有機骨架中侷限導電高分子之電鍍合成與其在超級電容器中之應用 Electrodeposited Conducting Polymer Confined within Cerium-Based Metal–Organic Framework Thin Films for Supercapacitors |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 鈰基金屬有機骨架 、導電高分子 、電聚合 、電化學儲能 |
| 外文關鍵詞: | Metal–organic framework, conducting polymer, electropolymerization, electrochemical energy storage |
| 相關次數: | 點閱:18 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal−Organic Frameworks, MOFs)為近二十年來新興的奈米多孔材料之一,其由一系列的金屬節點及有機連接器所構成,具有高比表面積、規律孔洞性、結構可調性等優點,這使得MOF於各個領域中被廣泛研究,像是擬電容器、感測,催化等。其中,鈰基金屬有機骨架(Ce-MOFs)中的Ce-MOF-808具有氧化還原活性,於水中也具有良好的穩定性,為有潛力的水相擬電容器材料之一。然而,由於大部分MOF由不具導電性的有機連接器所構成,其低導電度將會限制電子於MOF骨架上的傳遞,使得其於擬電容器上的發展受限。為解決此問題,許多文獻嘗試使用複合材料來促進電子的傳遞,而此篇研究也首次嘗試使用電聚合的方式結合導電高分子以及Ce-MOF-808以合成複合材料,並應用於電化學儲能領域,期望Ce-MOF-808的氧化還原反應可以貢獻額外的法拉第電容,其高比表面積和高孔隙率的結構可以促進電解液中的離子擴散,而導電高分子,Poly(3,4-ethylenedioxythiophene) (PEDOT),也可以協助MOF晶體間的電子傳遞,並貢獻非法拉第電容。
根據研究結果,PEDOT的單體會於MOF的孔洞中以及MOF顆粒間進行聚合,進而形成連續的導電相,其複合材料Ce-MOF-808/PEDOT展示了比純MOF及PEDOT更高的面積電容,且在長期充放電下具有更佳的穩定性,說明了PEDOT除了可貢獻非法拉第電容外,還可促進電子於MOF中活性位點的傳遞,也證明了MOF作為剛性骨架以及提供法拉第電流、提升PEDOT非法拉第電流的角色重要性。
In this research, Ce-MOF-808:PEDOT nanocomposites were synthesized by integrating the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with a cerium-based metal–organic framework (Ce-MOF-808) through pulse electrodeposition. The composition ratio of MOF to PEDOT in the composite materials was precisely controlled by changing the charge density during the electrodeposition process. The resulting samples were characterized in terms of their elemental distribution, surface area, crystallinity, and morphology.
The electrochemical behavior and capacitive performance of pristine Ce-MOF-808, pristine PEDOT thin films, and Ce-MOF-808:PEDOT composite thin films were evaluated in a Na2SO4(aq). The porous framework of Ce-MOF-808 contributes to pseudocapacitance through reversible redox reactions, while PEDOT enhances electron transport and introduces additional double-layer capacitance. Consequently, the Ce-MOF-808:PEDOT composite thin films demonstrate enhanced electrochemical performance compared to both individual MOF and PEDOT thin films, highlighting their potential for supercapacitor applications.
1. González, J.; Laborda, E.; Molina, Á. Voltammetric kinetic studies of electrode reactions: guidelines for detailed understanding of their fundamentals. Journal of chemical education, 100, 2, 697-706, 2022.
2. Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41, 2, 797-828, 2012.
3. Sa, Y. J.; Lee, C. W.; Lee, S. Y.; Na, J.; Lee, U.; Hwang, Y. J. Catalyst–electrolyte interface chemistry for electrochemical CO 2 reduction. Chemical Society Reviews, 49, 18, 6632-6665, 2020.
4. Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A review on recent trends and future developments in electrochemical sensing. ACS omega, 9, 7, 7336-7356, 2024.
5. Sajid, M.; Baig, N.; Alhooshani, K. Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities. TrAC Trends in Analytical Chemistry, 118, 368-385, 2019.
6. Kou, T.; Yao, B.; Liu, T.; Li, Y. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. Journal of Materials Chemistry A, 5, 33, 17151-17173, 2017.
7. Murray, R. W.; Ewing, A. G.; Durst, R. A. Chemically modified electrodes. Electroanalytical chemistry, 13, 1987.
8. Zen, J. M.; Senthil Kumar, A.; Tsai, D. M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 15, 13, 1073-1087, 2003.
9. Chuang, C.-H.; Li, J.-H.; Chen, Y.-C.; Wang, Y.-S.; Kung, C.-W. Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. The Journal of Physical Chemistry C, 124, 38, 20854-20863, 2020.
10. Chang, Y.-N.; Shen, C.-H.; Huang, C.-W.; Tsai, M.-D.; Kung, C.-W. Defective metal–organic framework nanocrystals as signal amplifiers for electrochemical dopamine sensing. ACS Applied Nano Materials, 6, 5, 3675-3684, 2023.
11. Tsai, M.-D.; Chen, Y.-L.; Chang, J.-W.; Yang, S.-C.; Kung, C.-W. Sulfonate-functionalized two-dimensional metal–organic framework as a “dispersant” for polyaniline to boost its electrochemical capacitive performance. ACS Applied Energy Materials, 6, 21, 11268-11277, 2023.
12. Wang, Y.-C.; Yen, J.-H.; Huang, C.-W.; Chang, T.-E.; Chen, Y.-L.; Chen, Y.-H.; Lin, C.-Y.; Kung, C.-W. Metal–organic framework-derived electrocatalysts competent for the conversion of acrylonitrile to adiponitrile. ACS Applied Materials & Interfaces, 14, 31, 35534-35544, 2022.
13. Sharma, P.; Bhatti, T. A review on electrochemical double-layer capacitors. Energy conversion and management, 51, 12, 2901-2912, 2010.
14. Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2, 1, 30-37, 2019.
15. Shen, C.-H.; Chang, Y.-N.; Chen, Y.-L.; Kung, C.-W. Sulfonate-grafted metal–organic framework─ a porous alternative to Nafion for electrochemical sensors. ACS Materials Letters, 5, 7, 1938-1943, 2023.
16. Tsai, M.-D.; Wang, Y.-C.; Chen, Y.-L.; Chen, Y.-H.; Shen, C.-H.; Kung, C.-W. Selectively confined poly (3, 4-ethylenedioxythiophene) in the nanopores of a metal–organic framework for electrochemical nitrite detection with reduced limit of detection. ACS Applied Nano Materials, 5, 9, 12980-12990, 2022.
17. Chang, Y.-S.; Li, J.-H.; Chen, Y.-C.; Ho, W. H.; Song, Y.-D.; Kung, C.-W. Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochimica Acta, 347, 136276, 2020.
18. Song, C.; Zhang, J. Electrocatalytic oxygen reduction reaction. In PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, Springer, 2008; pp 89-134.
19. Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 42, 16, 11053-11077, 2017.
20. Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts. Advanced Energy Materials, 7, 1, 1601275, 2017.
21. Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Accounts of chemical research, 54, 2, 311-322, 2021.
22. Wang, Z.-L.; Xu, D.; Xu, J.-J.; Zhang, X.-B. Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 43, 22, 7746-7786, 2014.
23. Bertoncello, P.; Ciani, I.; Li, F.; Unwin, P. R. Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir− Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir, 22, 25, 10380-10388, 2006.
24. Shi, M.; Anson, F. C. Rapid oxidation of Ru (NH3) 63+ by Os (bpy) 33+ within Nafion coatings on electrodes. Langmuir, 12, 8, 2068-2075, 1996.
25. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Advanced materials, 22, 8, E28-E62, 2010.
26. Sun, J.; Luo, B.; Li, H. A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: past, present, and future. Advanced Energy and Sustainability Research, 3, 6, 2100191, 2022.
27. Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 7, 7, 2942-2964, 2019.
28. Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Science advances, 4, 6, eaas9820, 2018.
29. Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. Journal of Materials Chemistry A, 2, 28, 10776-10787, 2014.
30. Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473, 2018.
31. Pan, H.; Li, J.; Feng, Y. Carbon nanotubes for supercapacitor. Nanoscale research letters, 5, 654-668, 2010.
32. Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5, 25, 12653-12672, 2017.
33. Fleischmann, S.; Mitchell, J. B.; Wang, R.; Zhan, C.; Jiang, D.-e.; Presser, V.; Augustyn, V. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chemical Reviews, 120, 14, 6738-6782, 2020.
34. Srividhya, G.; Ponpandian, N. Pseudocapacitance: Mechanism and Characteristics. In Pseudocapacitors: Fundamentals to High Performance Energy Storage Devices, Springer, 2023; pp 39-56.
35. Gujar, T.; Kim, W.-Y.; Puspitasari, I.; Jung, K.-D.; Joo, O.-S. Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. International Journal of Electrochemical Science, 2, 9, 666-673, 2007.
36. Zhang, J.; Ma, J.; Zhang, L. L.; Guo, P.; Jiang, J.; Zhao, X. Template synthesis of tubular ruthenium oxides for supercapacitor applications. The Journal of Physical Chemistry C, 114, 32, 13608-13613, 2010.
37. Shih, Y.-T.; Lee, K.-Y.; Huang, Y.-S. Characterization of iridium dioxide–carbon nanotube nanocomposites grown onto graphene for supercapacitor. Journal of Alloys and Compounds, 619, 131-137, 2015.
38. Wickramasinghe, D.; Oh, J.-M.; McGraw, S.; Senecal, K.; Chow, K.-F. Electrochemical effects of depositing iridium oxide nanoparticles onto conductive woven and nonwoven flexible substrates. ACS Applied Energy Materials, 2, 1, 372-381, 2018.
39. Yi, C.-q.; Zou, J.-p.; Yang, H.-z.; Xian, L. Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides. Transactions of Nonferrous Metals Society of China, 28, 10, 1980-2001, 2018.
40. Maheswari, N.; Muralidharan, G. Hexagonal CeO 2 nanostructures: an efficient electrode material for supercapacitors. Dalton Transactions, 45, 36, 14352-14362, 2016.
41. Wang, Y.; Guo, C. X.; Liu, J.; Chen, T.; Yang, H.; Li, C. M. CeO 2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton transactions, 40, 24, 6388-6391, 2011.
42. Ingram, Z. J.; Lander, C. W.; Oliver, M. C.; Altınçekiç, N. G. k. e.; Huang, L.; Shao, Y.; Noh, H. Hydrogen Atom Binding Energy of Structurally Well-Defined Cerium Oxide Nodes at the Metal–Organic Framework–Liquid Interfaces. The Journal of Physical Chemistry C, 128, 23, 9556-9565, 2024.
43. Singh, C.; Paul, A. Physisorbed hydroquinone on activated charcoal as a supercapacitor: an application of proton-coupled electron transfer. The Journal of Physical Chemistry C, 119, 21, 11382-11390, 2015.
44. Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Proton-coupled electron transfer. Chemical Reviews, 112, 7, 4016-4093, 2012.
45. Bryan, A. M.; Santino, L. M.; Lu, Y.; Acharya, S.; D’Arcy, J. M. Conducting polymers for pseudocapacitive energy storage. Chemistry of Materials, 28, 17, 5989-5998, 2016.
46. Zhao, Z.; Xia, K.; Hou, Y.; Zhang, Q.; Ye, Z.; Lu, J. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chemical Society Reviews, 50, 22, 12702-12743, 2021.
47. Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of power sources, 196, 1, 1-12, 2011.
48. Gharahcheshmeh, M. H.; Chowdhury, K. U. A. Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices. Energy Advances, 2024.
49. Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano letters, 14, 5, 2522-2527, 2014.
50. Wang, L.; Li, X.; Wang, G. Construction of an electrochemical stable conductive network to improve the pseudocapacitance of polyaniline. Electrochimica Acta, 331, 135279, 2020.
51. Huang, Z.-H.; Song, Y.; Xu, X.-X.; Liu, X.-X. Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode. ACS applied materials & interfaces, 7, 45, 25506-25513, 2015.
52. Bauer, C.; Kirchner, M.; Krueger, A. In situ polymerization of EDOT onto sulfonated onion-like carbon for efficient pseudocapacitor electrodes. Energy Advances, 3, 6, 1422-1430, 2024.
53. Gascón, N. C.; Terryn, H.; Hubin, A. The role of PEDOT: PSS in (super) capacitors: A review. Next Nanotechnology, 2, 100015, 2023.
54. Kelly, T. L.; Yano, K.; Wolf, M. O. Supercapacitive properties of PEDOT and carbon colloidal microspheres. ACS applied materials & interfaces, 1, 11, 2536-2543, 2009.
55. Ma, Y.; Xu, K.; Liu, X.; Yao, S.; Li, X.; Si, Y.; Li, X. 3D porous PEDOT/MXene scaffold toward high-performance supercapacitors. Chemical Engineering Journal, 496, 154348, 2024.
56. Lehtimaki, S.; Suominen, M.; Damlin, P.; Tuukkanen, S.; Kvarnström, C.; Lupo, D. Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS applied materials & interfaces, 7, 40, 22137-22147, 2015.
57. Zhao, Z.; Richardson, G. F.; Meng, Q.; Zhu, S.; Kuan, H.-C.; Ma, J. PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology, 27, 4, 042001, 2015.
58. An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances, 1, 12, 4644-4658, 2019.
59. Volkov, A. V.; Wijeratne, K.; Mitraka, E.; Ail, U.; Zhao, D.; Tybrandt, K.; Andreasen, J. W.; Berggren, M.; Crispin, X.; Zozoulenko, I. V. Understanding the Capacitance of PEDOT: PSS. Advanced Functional Materials, 27, 28, 1700329, 2017.
60. Abdah, M. A. A. M.; Zubair, N. A.; Azman, N. H. N.; Sulaiman, Y. Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Materials Chemistry and Physics, 192, 161-169, 2017.
61. Fu, D.; Zhou, H.; Zhang, X. M.; Han, G.; Chang, Y.; Li, H. Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically‐codeposited PEDOT‐GO. ChemistrySelect, 1, 2, 285-289, 2016.
62. Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature, 378, 6558, 703-706, 1995.
63. Yaghi, O. M.; Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Journal of the American Chemical Society, 117, 41, 10401-10402, 1995.
64. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature, 423, 6941, 705-714, 2003.
65. Li, H.; Wang, K.; Sun, Y.; Lollar, C. T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 21, 2, 108-121, 2018.
66. Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46, 1, 126-157, 2017.
67. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 9, 2, 172-178, 2010.
68. Baumann, A. E.; Burns, D. A.; Liu, B.; Thoi, V. S. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry, 2, 1, 86, 2019.
69. Cao, Z.; Momen, R.; Tao, S.; Xiong, D.; Song, Z.; Xiao, X.; Deng, W.; Hou, H.; Yasar, S.; Altin, S. Metal–organic framework materials for electrochemical supercapacitors. Nano-micro letters, 14, 1, 181, 2022.
70. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. O. z. r.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? Journal of the American Chemical Society, 134, 36, 15016-15021, 2012.
71. Ma, S.; Zhou, H.-C. Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications, 46, 1, 44-53, 2010.
72. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38, 5, 1477-1504, 2009.
73. Fujie, K.; Ikeda, R.; Otsubo, K.; Yamada, T.; Kitagawa, H. Lithium ion diffusion in a metal–organic framework mediated by an ionic liquid. Chemistry of Materials, 27, 21, 7355-7361, 2015.
74. Gittins, J. W.; Ge, K.; Balhatchet, C. J.; Taberna, P.-L.; Simon, P.; Forse, A. C. Understanding electrolyte ion size effects on the performance of conducting metal–organic framework supercapacitors. Journal of the American Chemical Society, 146, 18, 12473-12484, 2024.
75. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science, 341, 6149, 1230444, 2013.
76. Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chemical reviews, 112, 2, 970-1000, 2012.
77. Chang, T. E.; Chuang, C. H.; Chen, Y. H.; Wang, Y. C.; Gu, Y. J.; Kung, C. W. Iridium‐Functionalized Metal‐Organic Framework Nanocrystals Interconnected by Carbon Nanotubes Competent for Electrocatalytic Water Oxidation. ChemCatChem, 14, 15, e202200199, 2022.
78. Wang, C.; Liu, X.; Demir, N. K.; Chen, J. P.; Li, K. Applications of water stable metal–organic frameworks. Chemical Society Reviews, 45, 18, 5107-5134, 2016.
79. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P. Stable metal–organic frameworks: design, synthesis, and applications. Advanced Materials, 30, 37, 1704303, 2018.
80. Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45, 8, 2327-2367, 2016.
81. Jacobsen, J.; Ienco, A.; D'Amato, R.; Costantino, F.; Stock, N. The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 49, 46, 16551-16586, 2020.
82. Shen, C. H.; Kung, C. W. Stable and Electrochemically “Inactive” Metal− Organic Frameworks for Electrocatalysis. ChemElectroChem, 10, 23, e202300375, 2023.
83. Xie, L. S.; Skorupskii, G.; Dinca, M. Electrically conductive metal–organic frameworks. Chemical reviews, 120, 16, 8536-8580, 2020.
84. Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K.-H.; Deep, A. An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. Journal of Materials Chemistry A, 6, 31, 14992-15009, 2018.
85. Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal–organic frameworks. Angewandte Chemie International Edition, 55, 11, 3566-3579, 2016.
86. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. New porous crystals of extended metal-catecholates. Chemistry of Materials, 24, 18, 3511-3513, 2012.
87. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S. l.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High electrical conductivity in Ni3 (2, 3, 6, 7, 10, 11-hexaiminotriphenylene) 2, a semiconducting metal–organic graphene analogue. Journal of the American Chemical Society, 136, 25, 8859-8862, 2014.
88. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature materials, 16, 2, 220-224, 2017.
89. Kung, C.-W.; Goswami, S.; Hod, I.; Wang, T. C.; Duan, J.; Farha, O. K.; Hupp, J. T. Charge transport in zirconium-based metal–organic frameworks. Accounts of chemical research, 53, 6, 1187-1195, 2020.
90. Lin, S.; Usov, P. M.; Morris, A. J. The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications, 54, 51, 6965-6974, 2018.
91. Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. Journal of the American Chemical Society, 136, 6, 2464-2472, 2014.
92. Shen, C.-H.; Chuang, C.-H.; Gu, Y.-J.; Ho, W. H.; Song, Y.-D.; Chen, Y.-C.; Wang, Y.-C.; Kung, C.-W. Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance. ACS Applied Materials & Interfaces, 13, 14, 16418-16426, 2021.
93. Chen, Y.-H.; Shen, C.-H.; Chang, T.-E.; Wang, Y.-C.; Chen, Y.-L.; Kung, C.-W. Molybdenum-functionalized metal–organic framework crystals interconnected by carbon nanotubes as negative electrodes for supercapacitors. MRS Energy & Sustainability, 9, 2, 332-341, 2022.
94. Qiu, T.; Liang, Z.; Guo, W.; Tabassum, H.; Gao, S.; Zou, R. Metal–organic framework-based materials for energy conversion and storage. ACS Energy Letters, 5, 2, 520-532, 2020.
95. Yang, S.; Karve, V. V.; Justin, A.; Kochetygov, I.; Espín, J.; Asgari, M.; Trukhina, O.; Sun, D. T.; Peng, L.; Queen, W. L. Enhancing MOF performance through the introduction of polymer guests. Coordination Chemistry Reviews, 427, 213525, 2021.
96. Song, Y. D.; Ho, W. H.; Chen, Y. C.; Li, J. H.; Wang, Y. S.; Gu, Y. J.; Chuang, C. H.; Kung, C. W. Selective formation of polyaniline confined in the nanopores of a metal–organic framework for supercapacitors. Chemistry–A European Journal, 27, 10, 3560-3567, 2021.
97. Wang, Y. S.; Chen, Y. C.; Li, J. H.; Kung, C. W. Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese. European Journal of Inorganic Chemistry, 2019, 26, 3036-3044, 2019.
98. Sangeetha, S.; Krishnamurthy, G. Electrochemical and photocatalytic applications of Ce-MOF. Bulletin of Materials Science, 43, 1, 269, 2020.
99. Hu, Z.; Wang, Y.; Zhao, D. The chemistry and applications of hafnium and cerium (IV) metal–organic frameworks. Chemical Society Reviews, 50, 7, 4629-4683, 2021.
100. Lammert, M.; Glißmann, C.; Reinsch, H.; Stock, N. Synthesis and characterization of new Ce (IV)-MOFs exhibiting various framework topologies. Crystal Growth & Design, 17, 3, 1125-1131, 2017.
101. Khaleeq, A.; Tariq, S. R.; Chotana, G. A. Fabrication of samarium doped MOF-808 as an efficient photocatalyst for the removal of the drug cefaclor from water. RSC advances, 14, 15, 10736-10748, 2024.
102. Serrano-Claumarchirant, J. F.; Culebras, M.; Muñoz-Espí, R.; Cantarero, A. s.; Gómez, C. M.; Collins, M. N. PEDOT thin films with n-type thermopower. ACS Applied Energy Materials, 3, 1, 861-867, 2019.
103. Pang, H.; Skabara, P. J.; Gordeyev, S.; McDouall, J. J.; Coles, S. J.; Hursthouse, M. B. Poly (3, 4-Ethylenediselena) thiophene the Selenium Equivalent of PEDOT. Chemistry of materials, 19, 2, 301-307, 2007.
104. Kung, C.-W.; Cheng, Y.-H.; Chen, H.-W.; Vittal, R.; Ho, K.-C. Hollow microflower arrays of PEDOT and their application for the counter electrode of a dye-sensitized solar cell. Journal of Materials Chemistry A, 1, 36, 10693-10702, 2013.
105. Yassin, J. M.; Taddesse, A. M.; Sánchez-Sánchez, M. Room temperature synthesis of high-quality Ce (IV)-based MOFs in water. Microporous and Mesoporous Materials, 324, 111303, 2021.
106. Lammert, M.; Reinsch, H.; Murray, C.; Wharmby, M.; Terraschke, H.; Stock, N. Synthesis and structure of Zr (iv)-and Ce (iv)-based CAU-24 with 1, 2, 4, 5-tetrakis (4-carboxyphenyl) benzene. Dalton Transactions, 45, 47, 18822-18826, 2016.
107. Villoria‐del‐Álamo, B.; Rojas‐Buzo, S.; García‐García, P.; Corma, A. Zr‐MOF‐808 as Catalyst for Amide Esterification. Chemistry–A European Journal, 27, 14, 4588-4598, 2021.
108. Han, Y.; Liu, M.; Li, K.; Zuo, Y.; Wei, Y.; Xu, S.; Zhang, G.; Song, C.; Zhang, Z.; Guo, X. Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 17, 33, 6434-6440, 2015.
109. Zhang, K.; Duan, X.; Zhu, X.; Hu, D.; Xu, J.; Lu, L.; Sun, H.; Dong, L. Nanostructured graphene oxide–MWCNTs incorporated poly (3, 4-ethylenedioxythiophene) with a high surface area for sensitive determination of diethylstilbestrol. Synthetic metals, 195, 36-43, 2014.
110. Xie, Y.; Zhang, S.-H.; Jiang, H.-Y.; Zeng, H.; Wu, R.-M.; Chen, H.; Gao, Y.-F.; Huang, Y.-Y.; Bai, H.-L. Properties of carbon black-PEDOT composite prepared via in-situ chemical oxidative polymerization. e-Polymers, 19, 1, 61-69, 2019.
111. Elci, A.; Demirtas, O.; Ozturk, I. M.; Bek, A.; Nalbant Esenturk, E. Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities. Journal of Materials Science, 53, 16345-16356, 2018.
112. Bui-Thi-Tuyet, V.; Cannizzo, C.; Legros, C.; Andrieux, M.; Chaussé, A. Modification of fluorine-doped tin oxide surface: Optimization of the electrochemical grafting of diazonium salt. Surfaces and Interfaces, 15, 110-116, 2019. Liu, H.; Wang, A.; Sun, Q.; Wang, T.; Zeng, H. Cu nanoparticles/fluorine-doped tin oxide (FTO) nanocomposites for photocatalytic H2 evolution under visible light irradiation. Catalysts, 7, 12, 385, 2017.
113. Shimoni, R.; He, W.; Liberman, I.; Hod, I. Tuning of redox conductivity and electrocatalytic activity in metal–organic framework films via control of defect site density. The Journal of Physical Chemistry C, 123, 9, 5531-5539, 2019.
114. Lin, S.; Pineda‐Galvan, Y.; Maza, W. A.; Epley, C. C.; Zhu, J.; Kessinger, M. C.; Pushkar, Y.; Morris, A. J. Electrochemical water oxidation by a catalyst‐modified metal–organic framework thin film. ChemSusChem, 10, 3, 514-522, 2017.
115. Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical methods: fundamentals and applications; John Wiley & Sons, 2022.
116. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS nano, 4, 4, 1963-1970, 2010.
117. Xu, J.; Wang, K.; Zu, S.-Z.; Han, B.-H.; Wei, Z. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS nano, 4, 9, 5019-5026, 2010.
118. Muruganantham, R.; Gu, Y.-J.; Song, Y.-D.; Kung, C.-W.; Liu, W.-R. Ce-MOF derived ceria: Insights into the Na-ion storage mechanism as a high-rate performance anode material. Applied Materials Today, 22, 100935, 2021.
119. Chuang, Y.-P.; Shen, C.-H.; Hsu, H.-J.; Su, Y.-Z.; Yang, S.-C.; Yu, S.-S.; Kung, C.-W. Cerium (iv)-based metal–organic framework nanostructures grown on 3d-printed free-standing membranes and their derivatives for charge storage. ACS Applied Nano Materials, 6, 21, 19701-19709, 2023.
120. Ghafourisaleh, S.; Popov, G.; Leskela, M.; Putkonen, M.; Ritala, M. Oxidative MLD of conductive PEDOT thin films with EDOT and ReCl5 as precursors. ACS omega, 6, 27, 17545-17554, 2021.
121. Lin, Y.-C.; Chen, Y.-Y.; Yu, B.-Y.; Lin, W.-C.; Kuo, C.-H.; Shyue, J.-J. Sputter-induced chemical transformation in oxoanions by combination of C 60+ and Ar+ ion beams analyzed with X-ray photoelectron spectrometry. Analyst, 134, 5, 945-951, 2009.
122. He, Q.; Ye, J.; Peng, Z.; Guo, Y.; Tan, L.; Chen, Y. Electrodeposition of poly (3, 4-ethylenedioxythiophene) coated manganese dioxide nanospheres for flexible asymmetric planar supercapacitor with superior energy density. Journal of Power Sources, 506, 230176, 2021.
123. Gong, Q.; Gao, T.; Huang, H.; Wang, R.; Cao, P.; Zhou, G. Double-shelled CeO 2@ C hollow nanospheres as enhanced anode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 5, 12, 3197-3204, 2018.