簡易檢索 / 詳目顯示

研究生: 蕭翔允
Hsiao, Hsiang-Yun
論文名稱: 大鼠在右美托嘧啶誘導麻醉下學習抑制型逃避學習作業與其神經機制
Neural mechanism of inhibitory avoidance learning under dexmedetomidine-induced anesthesia in rats
指導教授: 陳德祐
Chen, Der-Yow
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 56
中文關鍵詞: 恐懼制約麻醉右美托嘧啶杏仁核海馬迴
外文關鍵詞: fear conditioning, anesthesia, dexmedetomidine, amygdala, hippocampus
相關次數: 點閱:130下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 意識在學習記憶中的角色到現今仍未完全明瞭。過去研究發現即使在缺乏完整意識的麻醉狀態下,仍具有形成記憶的可能,特別是內隱記憶。而麻醉藥劑的特性與學習作業的本質可能都會影響麻醉下學習的效果。本論文選用右美托嘧啶(dexmedetomidine, DEX),一種α2型腎上腺素致效劑,作為行為實驗用的麻醉藥。並透過改良後的抑制型逃避學習作業來探討麻醉下習得恐懼制約的可能。首先,初步探索性實驗發現,在DEX麻醉下反覆進行電擊與暗箱的配對訓練之後動物可以習得恐懼制約。接下來以這個訓練程序為基礎,進一步解析何項程序對麻醉下學習是重要的。結果顯示,第一天動物探索整個環境以及每天麻醉下電擊訓練前暴露在沒有電擊的亮箱區域對這個學習都扮演重要角色。再者,暴露在亮箱的階段若是被麻醉,學習效果便會稍微減弱。本論文也檢測訓練前於周邊注射腎上腺素對麻醉下學習的影響,結果顯示腎上腺素能促進麻醉下學習,讓沒有受到亮箱暴露階段的動物也能在麻醉下學習,但是動物仍需要在第一天探索過整個實驗箱環境。最後,利用永久性毀除手術或顱內微量注射暫時性抑制基底外側杏仁核或背側海馬迴功能,來瞭解這兩個區域在麻醉下學習的重要性。實驗結果發現這兩個區域受到毀除後,動物皆無法在麻醉下學習。另外,基底外側杏仁核在電擊訓練階段被抑制會導致動物無法在麻醉下學習,但在亮箱暴露階段被抑制則仍可學會。背側海馬迴在亮箱暴露階段受到抑制時會損害學習,電擊訓練階段有類似的趨勢但未達統計顯著。總之,本篇論文成功地建立麻醉下學習抑制性逃避學習作業的程序,且初步探索腎上腺素對此學習的促進效果,以及杏仁核與海馬迴在此學習中扮演的角色。希冀未來能延續此成果,藉由更廣泛而深入地研究各種麻醉狀態下的學習記憶探討意識所扮演的角色。

    Anesthesia may interfere with brain and cognitive function, but animals and human still can perform certain kinds of learning and memory under anesthesia. These lines of evidence indicate that fully consciousness may not be required for all kind of learning. The aim of present study is to establish a training protocol of a modified inhibitory avoidance (IA) task when rats were anesthetized by dexmedetomidine (DEX). In the first experiment, anesthetized rats showed improved learning after repeated training sessions. We further examined which part of the procedure is important to the learning under anesthesia. Our results showed that free exploration of the entire apparatus, and exposure to the light chamber (light-exposure) under anesthesia are important. We also demonstrated that even light-exposure was performed under anesthesia, rats can still acquire this learning. In addition, we found that epinephrine enhanced the learning under DEX-anesthesia. Finally, we investigated the neural mechanism underlying this learning. Lesions of the amygdala, basolateral amygdala (BLA) or dorsal hippocampus (DH) caused impaired memory retention. Furthermore, infusion of lidocaine into the BLA during dark-shock pairing stage impaired this learning. In contrast, infusion of lidocaine into the DH during light-exposure stage impaired this learning. These findings are consistent with those results from awake animals: the hippocampus is involved in spatial related memory, whereas the amygdala is involved in aversive learning. Further experiments are required to investigate the difference between the learning under anesthesia or awake.

    摘要 i Extended Abstract iii 致謝 vii 緒論 1 材料與方法 11 實驗ㄧ:探索右美托嘧啶麻醉下習得抑制性逃避學習作業的可能性 18 實驗二:建立右美托嘧啶誘導麻醉下抑制性逃避學習作業之程序 19 實驗三:右美托嘧啶麻醉對於亮箱暴露階段之影響 21 實驗四:周邊注射腎上腺素對右美托嘧啶麻醉下學習抑制性逃避作業之效果 23 實驗五:杏仁核、基底外侧杏仁核或背側海馬迴毀除對右美托嘧啶麻醉下學習抑制性逃避作業之影響 24 實驗六:利卡多因穿顱注射於基底外侧杏仁核或背側海馬迴對右美托嘧啶麻醉下學習抑制性逃避作業之影響 26 綜合討論 28 文獻 39 附表 43 附圖 47

    陳可欣(2017)。「恐懼條件學習改變得麻效鎮靜狀態大鼠之血氧濃度信號與功能性連結」(未出版之博士論文)。國立台灣大學心理學研究所。
    Aktas, G., Sahin, E., Turkay Aydogmus, M., & Erkin, Y. (2013). The Assessment of Memory under Total Intravenous Anesthesia. Brazilian Journal of Anesthesiology, 63(3), 301-306.
    Andrade, J. (1996). Investigations of Hypesthesia: Using Anesthetics to Explore Relationships between Consciousness, Learning, and Memory. Consciousness and Cognition, 5(4), 562-580.
    Barry, S., Benno, R., & L., M. J. (2000). Involvement of a basolateral amygdala complex–nucleus accumbens pathway in glucocorticoid-induced modulation of memory consolidation. European Journal of Neuroscience, 12(1), 367-375.
    Bennett, R. C., & Restitutti, F. (2016). Dexmedetomidine or medetomidine: which should veterinary surgeons select? Companion Animal, 21(3), 128-137.
    Boehm, C. A., Carney, E. L., Tallarida, R. J., & Wilson, R. P. (2010). Midazolam enhances the analgesic properties of dexmedetomidine in the rat. Veterinary Anaesthesia and Analgesia, 37(6), 550-556.
    Burne, T. H. J., Johnston, A. N. B., Wilkinson, L. S., & Kendrick, K. M. (2010). Effects of anesthetic agents on socially transmitted olfactory memories in mice. Neurobiology of Learning and Memory, 93(2), 268-274.
    Cahoon, L. (2008). Learning Under Anesthesia. Science, 321(5893), 1153-1153.
    Chang, S.-D., Chen, D.-Y., & Liang, K. C. (2008). Infusion of lidocaine into the dorsal hippocampus before or after the shock training phase impaired conditioned freezing in a two-phase training task of contextual fear conditioning. Neurobiology of Learning and Memory, 89(2), 95-105.
    Correa-Sales, C., Rabin, B. C., & Maze, M. (1992). A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology, 76(6), 948-952.
    Deshpande, G., Kerssens, C., Sebel, P. S., & Hu, X. (2010). Altered local coherence in the default mode network due to sevoflurane anesthesia. Brain Research, 1318, 110-121.
    Doze, V. A., Chen, B. X., & Maze, M. (1989). Dexmedetomidine produces a hypnotic-anesthetic action in rats via activation of central alpha-2 adrenoceptors. Anesthesiology, 71(1), 75-79.
    Edeline, J.-M., & Neuenschwander-El Massioui, N. (1988). Retention of CS-US association learned under ketamine anesthesia. Brain Research, 457(2), 274-280.
    el-Zahaby, H. M., Ghoneim, M. M., Johnson, G. M., & Gormezano, I. (1994). Effects of subanesthetic concentrations of isoflurane and their interactions with epinephrine on acquisition and retention of the rabbit nictitating membrane response. Anesthesiology, 81(1), 229-237.
    Franken, N. D., van Oostrom, H., Stienen, P. J., Doornenbal, A., & Hellebrekers, L. J. (2008). Evaluation of analgesic and sedative effects of continuous infusion of dexmedetomidine by measuring somatosensory- and auditory-evoked potentials in the rat. Vet Anaesth Analg, 35(5), 424-431.
    Franks, N. P., & Lieb, W. R. (1990). Mechanisms of general anesthesia. Environmental Health Perspectives, 87, 199-205.
    Franks, N. P., & Lieb, W. R. (1994). Molecular and cellular mechanisms of general anaesthesia. Nature, 367, 607.
    Ganon-Elazar, E., & Akirav, I. (2009). Cannabinoid Receptor Activation in the Basolateral Amygdala Blocks the Effects of Stress on the Conditioning and Extinction of Inhibitory Avoidance. The Journal of Neuroscience, 29(36), 11078-11088.
    Gold, P. E., Weinberger, N. M., & Sternberg, D. B. (1985). Epinephrine-Induced Learning under Anesthesia - Retention Performance at Several Training Testing Intervals. Behavioral Neuroscience, 99(5), 1019-1022.
    Helmstetter, F. J., & Bellgowan, P. S. (1994). Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behavioral Neuroscience, 108(5), 1005-1009.
    Jacoby, L. L., Toth, J. P., & Yonelinas, A. P. (1993). Separating conscious and unconscious influences of memory: Measuring recollection. Journal of Experimental Psychology, 122(2), 139-154.
    Jerusalinsky, D., Ferreira, M. B., Walz, R., Da Silva, R. C., Bianchin, M., Ruschel, A. C., . . . Izquierdo, I. (1992). Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behav Neural Biol, 58(1), 76-80.
    LaLumiere, R. T., Nawar, E. M., & McGaugh, J. L. (2005). Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions. Learn Mem, 12(3), 296-301.
    Liang, K. C. (2001). Pre- or post-training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5-HT1A receptors. European Journal of Neuroscience, 11(5), 1491-1500.
    Liang, K. C. (2009). Involvement of the Amygdala and Its Connected Structures in Formation and Expression of Inhibitory Avoidance Memory: Issues and Implications. The Chinese Journal of Physiology, 52(4), 196-214.
    Liang, K. C., Hu, S. J., & Chang, S. C. (1996). Formation and retrieval of inhibitory avoidance memory: differential roles of glutamate receptors in the amygdala and medial prefrontal cortex. Chin J Physiol, 39(3), 155-166.
    Lubke, M. A. Gitta H., Kerssens, M. A. C., Phaf, P. H., & Sebel, M. B. B. S. P. Peter S. (1999). Dependence of Explicit and Implicit Memory on Hypnotic State in Trauma Patients Anesthesiology, 90(3), 670-680.
    Malin, E. L., Ibrahim, D. Y., Tu, J. W., & McGaugh, J. L. (2007). Involvement of the rostral anterior cingulate cortex in consolidation of inhibitory avoidance memory: interaction with the basolateral amygdala. Neurobiol Learn Mem, 87(2), 295-302.
    Malin, E. L., & McGaugh, J. L. (2006). Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences of the United States of America, 103(6), 1959-1963.
    Matus-Amat, P., Higgins, E. A., Barrientos, R. M., & Rudy, J. W. (2004). The Role of the Dorsal Hippocampus in the Acquisition and Retrieval of Context Memory Representations. The Journal of Neuroscience, 24(10), 2431-2439.
    McGaugh, J. L., & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12(2), 205-210.
    Merikle, P. M., & Daneman, M. (1996). Memory for Unconsciously Perceived Events: Evidence from Anesthetized Patients. Consciousness and Cognition, 5(4), 525-541.
    Miranda, M. I., & McGaugh, J. L. (2004). Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory With Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala. Learning & Memory, 11(3), 312-317.
    Nacif-Coelho, C., Correa-Sales, C., Chang, L. L., & Maze, M. (1994). Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology, 81(6), 1527-1534.
    Nelson, B. A. Laura E., Lu, M. D. P. D. J., Guo, M. D. T., Saper, M. D. P. D. Clifford B., Franks, P. D. Nicholas P., & Maze, M. B. C. B. F. R. C. P. F. R. C. A. F. M. M. (2003). The α2-Adrenoceptor Agonist Dexmedetomidine Converges on an Endogenous Sleep-promoting Pathway to Exert Its Sedative Effects. Anesthesiology, 98(2), 428-436.
    Pawela, C. P., Biswal, B. B., Cho, Y. R., Kao, D. S., Li, R., Jones, S. R., . . . Hyde, J. S. (2008). Resting-state functional connectivity of the rat brain. Magn Reson Med, 59(5), 1021-1029.
    Peltier, S. J., Kerssens, C., Hamann, S. B., Sebel, P. S., Byas-Smith, M., & Hu, X. (2005). Functional connectivity changes with concentration of sevoflurane anesthesia. NeuroReport, 16(3), 285-288.
    Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106(2), 274-285.
    Roozendaal, B., & McGaugh, J. L. (1997). Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur J Neurosci, 9(1), 76-83.
    Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17(3), 367-395.
    Sonner, J. M., Xing, Y., Zhang, Y., Maurer, A., Fanselow, M. S., Dutton, R. C., & Eger, E. I. (2005). Administration of Epinephrine Does Not Increase Learning of Fear to Tone in Rats Anesthetized with Isoflurane or Desflurane. Anesthesia & Analgesia, 100(5), 1333-1337.
    Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie canadienne, 26(1), 1-12.
    Van Gulick, R. (2014). Consciousness. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2018 ed.): Metaphysics Research Lab, Stanford University.
    Weinberger, N., Gold, P., & Sternberg, D. (1984). Epinephrine enables Pavlovian fear conditioning under anesthesia. Science, 223(4636), 605-607.
    Wheeler, M. A., Stuss, D. T., & Tulving, E. (1997). Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychol Bull, 121(3), 331-354.
    Williams, K. A., Magnuson, M., Majeed, W., LaConte, S. M., Peltier, S. J., Hu, X., & Keilholz, S. D. (2010). Comparison of α-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magnetic Resonance Imaging, 28(7), 995-1003.
    Zhang, Y., Fukushima, H., & Kida, S. (2011). Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory. Molecular Brain, 4(1), 4.

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE