簡易檢索 / 詳目顯示

研究生: 陳彥琳
Chen, Yen-Lin
論文名稱: 軟性、彈性、可再利用微製造電連接陣列應用於二維材料
Microfabricated arrays of soft, flexible and recyclable electrical contacts for characterization of 2D materials
指導教授: 馬力歐
Mario Hofmann
蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: 軟性連接微製造液態金屬陣列二維材料
外文關鍵詞: soft contact, microfabrication, liquid metal array, 2D materials
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著穿戴式裝置的需求,柔軟及彈性的軟性連接在未來是不可或缺的趨勢。此種連接方式已應用於許多領域,例如腦神經科學、分子電晶體。此研究中,我們首度展示以微流道應用於微製造的連接陣列元件用於接觸二維材料。
    藉由整合3D 列印技術製造的模具,使得製造具有精密圖形的高分子軟性基板不需於無塵室環境中即可完成。全新的沈積方法能夠微製造液態金屬電極陣列。此元件能夠重複使用而不致於影響其量測表現並且僅殘留少量液態金屬於量測材料表面。此外,還能應用於曲面並且仍有準確的量測能力。
    此元件已用於測量化學氣相沈積生長的石墨烯薄膜並顯示與文獻⼀致的電性特徵曲線。另外,其亦被運用於難以用探針接觸的多層粉末二維材料,並且在粉末製程的電晶體元件有初步顯著的結果。

    As increase demand of wearable device, soft contact is indispensible in the future due to its soft nature and flexibility. This concept of contact has been applied to various fields such as neuroscience and molecular electronics. In this research we first demonstrate microfabricated arrays of microfluidic-based device to contact 2D materials.
    By incorporating 3D printed mold makes fine patterning polymeric substrate without clean room condition. Also, a novel way to deposit liquid metal enables microfabrication of
    liquid metal array. The device can be use repeatedly without sacrificing its performance and leave limited residue on materials of interest. Furthermore, it can be probe on curved surface and shows precise response.
    The device has been test on CVD grown graphene and shown reliable current-voltage characteristic. Also, it has been applied to flakes of 2D material, which are usually difficult
    to probe. Preliminary result of future 2D materials edge-based device has been developed.

    CHAPTER 1 Introduction ......................................................1 1.1. Soft contact .......................................................................1 1.1.1. The need for soft contacts .......................................1 1.1.2. State-of-the-art of soft contacts ...........................4 1.2. Soft contacts for 2D materials characterization ..8 1.2.1. Approach ..................................................................... 16 CHAPTER 2 Experimental techniques ........................... 18 2.1. Equipment ....................................................................... 18 2.1.1. 3D printer ..................................................................... 18 2.2. Sample preparation ..................................................... 20 2.2.1. 3D printed mold ........................................................ 20 2.2.2. PDMS ............................................................................. 22 2.2.3. Molding process ........................................................ 24 2.2.4. CVD graphene transfer ............................................ 27 2.2.5. Solution 2D materials ............................................... 29 2.2.6. Making gaps in PDMS .............................................. 30 2.2.7. Cast deposition ........................................................... 31 2.2.8. Liquid metal casting .................................................. 32 2.2.9. Making contact ............................................................ 35 2.3. Characterization .............................................................. 35 2.3.1. Transmission line model ........................................... 35 CHAPTER 3 Massive parallel graphene testing ............ 37 3.1. Transmission line model ............................................... 37 3.1.1. Contact resistance with Au ....................................... 37 3.1.2. TLM of CVD graphene ................................................ 38 3.2. Mobility of CVD graphene ............................................ 39 3.2.1. Mold structure ................................................................ 40 3.2.2. Result .................................................................................. 48 3.3. Novel properties ................................................................ 50 3.3.1. Probing on curved surface ......................................... 50 3.3.2. Recycle test ....................................................................... 55 CHAPTER 4 2D material edge based device .................... 57 4.1. Edge of 2D material ........................................................... 57 4.2. Contact ................................................................................... 58 4.3. Edge device .......................................................................... 61 CHAPTER 5 Reference .............................................................. 66

    1. Son, D., et al., Multifunctional wearable devices for diagnosis and therapy of movement
    disorders. Nat Nanotechnol, 2014. 9(5): p. 397-404.
    2. Humpolicek, P., et al., Biocompatibility of polyaniline. Synthetic Metals, 2012. 162(7-8): p.
    722-727.
    3. Asplund, M., et al., Toxicity evaluation of PEDOT/biomolecular composites intended for
    neural communication electrodes. Biomed Mater, 2009. 4(4): p. 045009.
    4. Liang, G., et al., A PDMS-based integrated stretchable microelectrode array (isMEA) for
    neural and muscular surface interfacing. IEEE Trans Biomed Circuits Syst, 2013. 7(1): p.
    1-10.
    5. Yuan, L., et al., Dependency of the tunneling decay coefficient in molecular tunneling
    junctions on the topography of the bottom electrodes. Angew Chem Int Ed Engl, 2014.
    53(13): p. 3377-81.
    6. Viventi, J., et al., Flexible, foldable, actively multiplexed, high-density electrode array for
    mapping brain activity in vivo. Nat Neurosci, 2011. 14(12): p. 1599-605.
    7. Jiang, L., et al., Defect Scaling with Contact Area in EGaIn-Based Junctions: Impact on
    Quality, Joule Heating, and Apparent Injection Current. The Journal of Physical Chemistry
    C, 2015. 119(2): p. 960-969.
    8. Wan, A., et al., Arrays of high quality SAM-based junctions and their application in
    molecular diode based logic. Nanoscale, 2015. 7(46): p. 19547-56.
    9. Fujii, S., et al., Rectifying Electron-Transport Properties through Stacks of Aromatic
    Molecules Inserted into a Self-Assembled Cage. J Am Chem Soc, 2015. 137(18): p.
    5939-47.
    10. Cheung, K.C., Implantable microscale neural interfaces. Biomed Microdevices, 2007. 9(6):
    p. 923-38.
    11. An. Bandi, et al., Development of a Novel Eighth-Nerve Intraneural Auditory
    Neuroprosthesis. Laryngoscope, 2003. 113(5): p. 833-42.
    12. Jeong, J.W., et al., Soft materials in neuroengineering for hard problems in neuroscience.
    Neuron, 2015. 86(1): p. 175-86.
    13. Loo, Y.L., et al., Soft, conformable electrical contacts for organic semiconductors:
    high-resolution plastic circuits by lamination. Proc Natl Acad Sci U S A, 2002. 99(16): p.
    10252-6.
    14. Sekitani, T., et al., Stretchable active-matrix organic light-emitting diode display using
    printable elastic conductors. Nat Mater, 2009. 8(6): p. 494-9.
    15. P.J. Rousche., et al. Flexible polyimide-based intracortical electrode arrays with bioactive
    capability. IEEE trans, 2001 48(3): p. 361-71.
    16. D. C. Rodger, et al., Flexible parylene-based multielectrode array technology for
    high-density neural stimulation and recording. Sensors and acturators, 2007. 132: p. 449-60.
    17. Trung, T.Q., et al., An All-Elastomeric Transparent and Stretchable Temperature Sensor for
    Body-Attachable Wearable Electronics. Adv Mater, 2016. 28(3): p. 502-9.
    18. Ordonez, R.C., et al., Conformal Liquid-Metal Electrodes for Flexible Graphene Device
    Interconnects. IEEE Transactions on Electron Devices, 2016. 63(10): p. 4018-4023.
    19. M.J. Regan, et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys. Review,
    1997. 55(16) 10787-790
    20. Khan, M.R., et al., Giant and switchable surface activity of liquid metal via surface
    oxidation. Proc Natl Acad Sci U S A, 2014. 111(39): p. 14047-51.
    21. Ladd, C., et al., 3D printing of free standing liquid metal microstructures. Adv Mater, 2013.
    25(36): p. 5081-5.
    22. Sangeeth, C.S., A. Wan, and C.A. Nijhuis, Equivalent circuits of a self-assembled
    monolayer-based tunnel junction determined by impedance spectroscopy. J Am Chem Soc,
    2014. 136(31): p. 11134-44.
    23. Dickey, M.D., et al., Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the
    Formation of Stable Structures in Microchannels at Room Temperature. Advanced
    Functional Materials, 2008. 18(7): p. 1097-1104.
    24. Simeone, F.C., et al., Defining the value of injection current and effective electrical contact
    area for EGaIn-based molecular tunneling junctions. J Am Chem Soc, 2013. 135(48): p.
    18131-44.
    25. Utko, P., et al., Injection molded nanofluidic chips: fabrication method and functional tests
    using single-molecule DNA experiments. Lab Chip, 2011. 11(2): p. 303-8.
    26. J. W. Suk, et al. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates.
    ACS Nano, 2011. 5(9): p. 6916-24.
    27. Merrell, A. and F. Liu, Graphene processing using electron beam assisted metal deposition
    and masked chemical vapor deposition growth. Journal of Vacuum Science & Technology
    B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and
    Phenomena, 2016. 34(4): p. 041230.
    28. Morozov, S.V., et al., Two-dimensional electron and hole gases at the surface of graphite.
    Physical Review B, 2005. 72(20).
    29. K. S. Novoselov., et al., Electric Field Effect in Atomically Thin Carbon Films. Science,
    2004 306 p. 666-669.
    30. A. K. Geam. et al., The rise of graphene. Nature, 2007 p. 183-191
    31. Lafkioti, M., et al., Graphene on a hydrophobic substrate: doping reduction and hysteresis
    suppression under ambient conditions. Nano Lett, 2010. 10(4): p. 1149-53.
    32. Acik, M. and Y.J. Chabal, A Review on Reducing Graphene Oxide for Band Gap
    Engineering. Journal of Materials Science Research, 2012. 2(1).
    33. Arora, V.K. and A. Bhattacharyya, Cohesive band structure of carbon nanotubes for
    applications in quantum transport. Nanoscale, 2013. 5(22): p. 10927-35.
    34. Liao, L., et al., High-speed graphene transistors with a self-aligned nanowire gate. Nature,
    2010. 467(7313): p. 305-8.
    35. Wu, Y., et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature,
    2011. 472(7341): p. 74-8.
    36. Yoon, Y., K. Ganapathi, and S. Salahuddin, How good can monolayer MoS(2) transistors be?
    Nano Lett, 2011. 11(9): p. 3768-73.
    37. Fang, H., et al., Degenerate n-doping of few-layer transition metal dichalcogenides by
    potassium. Nano Lett, 2013. 13(5): p. 1991-5.
    38. Han, S.W., et al., Band-gap transition induced by interlayer van der Waals interaction in
    MoS2. Physical Review B, 2011. 84(4).
    39. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011. 6(3): p.
    147-50.
    40. Das, S., et al., High performance multilayer MoS2 transistors with scandium contacts. Nano
    Lett, 2013. 13(1): p. 100-5.
    41. Liu, Y., et al., Giant enhancement in vertical conductivity of stacked CVD graphene sheets
    by self-assembled molecular layers. Nat Commun, 2014. 5: p. 5461.
    42. R. D. P. Wong., et al. ,Flexible microfluidic normal force sensor skin for tactile feedback.
    Sensors and acturators A, 2012. 179: p. 62-69.
    43. <Apparatus for production of three dimensional objects by stereolithography.pdf>.
    44. Chan, H.N., et al., Direct, one-step molding of 3D-printed structures for convenient
    fabrication of truly 3D PDMS microfluidic chips. Microfluidics and Nanofluidics, 2015.
    19(1): p. 9-18.
    45. Comina, G., A. Suska, and D. Filippini, PDMS lab-on-a-chip fabrication using 3D printed
    templates. Lab Chip, 2014. 14(2): p. 424-30.
    46. Losurdo, M., et al., Graphene CVD growth on copper and nickel: role of hydrogen in
    kinetics and structure. Phys Chem Chem Phys, 2011. 13(46): p. 20836-43.
    47. Asadi, K., et al., Up-scaling graphene electronics by reproducible metal-graphene contacts.
    ACS Appl Mater Interfaces, 2015. 7(18): p. 9429-35.
    48. Fassler, A. and C. Majidi, 3D structures of liquid-phase GaIn alloy embedded in PDMS with
    freeze casting. Lab Chip, 2013. 13(22): p. 4442-50.
    49. Nezich, D., A. Reina, and J. Kong, Electrical characterization of graphene synthesized by
    chemical vapor deposition using Ni substrate. Nanotechnology, 2012. 23(1): p. 015701.
    50. S. D., et al. Are There Fundamental Limitations on the Sheet Resistance and Transmittance
    of Thin Graphene Films? ACS Nano, 2010 4(5): p. 2713-20.
    51. Hsieh, Y.P., et al., Scalable production of graphene with tunable and stable doping by
    electrochemical intercalation and exfoliation. Phys Chem Chem Phys, 2016. 18(1): p.
    339-43.

    下載圖示 校內:2023-08-08公開
    校外:2023-08-08公開
    QR CODE