| 研究生: |
張世杰 Chang, Shih-Jie, |
|---|---|
| 論文名稱: |
元素個數小於等於8的環的分類 Classification of finite rings whose order not exceed 8 |
| 指導教授: |
柯文峰
Ke, Wen-Fong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 有限環 、有限環的分類 |
| 外文關鍵詞: | finite ring, classification of finite rings, cyclic ring |
| 相關次數: | 點閱:76 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們將對元素個數為質數的環還有元素個數不超過8的環做分類。第一小節對元素個數為質數的環做分類。第二小節對元素個數為6的環做分類。第三小節對元素個數為4的環做分類。第四小節對元素個數為8的環做分類。
In this thesis, we classify the rings of prime order and the rings whose order does not exceed 8.
[1] Decompose your ring using idempotents. http://www.tricki.org/
article/Decompose_your_ring_using_idempotents.
[2] Paolo Alu . Algebra: Chapter 0. AMC, 10:12, 2009.
[3] VG Antipkin and VP Elizarov. Rings of order p 3. Siberian
Mathematical Journal, 23(4):457{464, 1982. The original article is
available at http://www.rusdml.de/rdms/rimg/?PPN=PPN394039319_
0023&DMDID=DMDLOG_0080.
[4] Michael Axtell, Joe Stickles, and Wallace Trampbachls. Zero-divisor
ideals and realizable zero-divisor graphs. Involve, a Journal of Math-
ematics, 2(1):17{27, 2009. Available at http://www.math.uiuc.edu/
~pecheni2/pdfs/involve.pdf.
[5] Phani Bhushan Bhattacharya, Surender Kumar Jain, and SR Nagpaul.
Basic abstract algebra. Cambridge University Press, 1994.
[6] Gilberto Bini and Flaminio Flamini. Finite commutative rings and their
applications. Springer, 2002.
[7] Gilberto Bini and Flamino Flamini. Finite commutative rings and
their applications. http://www.researchgate.net/publication/
235426680_Finite_Commutative_Rings_and_Their_Applications/
file/d912f513b47087384a.pdf.
[8] DM Bloom. Rings of order four. Amer. Math. Monthly, 71:918{920,
1964. http://www.jstor.org/stable/2312421.
[9] Warren K. Buck. Cyclic rings. Master's thesis, Eastern Illinois Uni-
versity, 2004. Available at https://www.uni.illinois.edu/~wbuck/
thesis.pdf.
[10] David S Dummit and Richard M Foote. Abstract algebra. 2004.
[11] Colin R Fletcher. Rings of small order. The Mathematical Gazette, pages
9{22, 1980.
[12] Alexandra Forsythe and Neal H McCoy. On the commutativ-
ity of certain rings. Bulletin of the American Mathematical
Society, 52(6):523{526, 1946. Available at http://www.ams.
org/journals/bull/1946-52-06/S0002-9904-1946-08603-6/
S0002-9904-1946-08603-6.pdf.
[13] Joseph Gallian. Contemporary abstract algebra. Cengage Learning, 2009.
[14] William J Gilbert and W Keith Nicholson. Modern algebra with
applications, volume 66. John Wiley & Sons, 2004. Available at
http://cs.ioc.ee/~margo/aat/Gilbert%20W.J.,%20Nicholson%
20W.K.%20Modern%20algebra%20with%20applications%20(2ed.,%
20Wiley,%202004)(ISBN%200471414514)(347s).pdf.
[15] Israel Nathan Herstein. Noncommutative rings. Number 15. Cambridge
University Press, 2005.
[16] Jonathan K Hodge, Steven Schlicker, and Ted Sundstrom. Abstract
Algebra: An Inquiry Based Approach. CRC Press, 2013.
[17] Thomas W Hungerford. Algebra, volume 73 of graduate texts in math-
ematics, 1980.
[18] N Jacobson. Basic algebra, 2 , 2009.
[19] Nathan Jacobson. Structure theory for algebraic algebras of bounded
degree. Annals of Mathematics, pages 695{707, 1945. http://www.
jstor.org/stable/1969205.
[20] Nathan Jacobson. Basic algebra I. Courier Dover Publications, 2012.
[21] Nikita A Karpenko. Hyperbolicity of hermitian forms over biquater-
nion algebras. Linear Algebraic Groups and Related Structures (preprint
server), 2009. Available at http://www.math.uiuc.edu/K-theory/
0922/hyperrho.pdf.
[22] Robert Leroy Kruse and David T Price. Nilpotent rings. Gordon and
Breach New York, 1969.
[23] Piotr A Krylov and Askar A Tuganbaev. Modules over discrete valuation
domains, volume 43. Walter de Gruyter, 2008.
[24] E. L. Lady. Lifting idempotents modulo a nil ideal. http://www.math.
hawaii.edu/~lee/algebra/idempotent.pdf.
[25] Tsi-Yuen Lam. A rst course in noncommutative rings. Springer Science
& Business, 2013.
[26] Tsit-Yuen Lam and Tsit-Yuen Lam. Exercises in classical ring theory,
volume 2. Springer, 2003.
[27] Ju-Si Lee. The restricted solution of ax + by = gcd (a; b). Tai-
wanese Journal of Mathematics, 12(5):1191{1199, 2008. Available at
http://journal.taiwanmathsoc.org.tw/index.php/TJM/article/
view/642/512.
[28] Neal Henry McCoy. The theory of rings. Macmillan New York, 1964.
[29] Bernard R McDonald. Finite rings with identity. M. Dekker New York,
1974.
[30] W Keith Nicholson. Introduction to abstract algebra. John Wiley &
Sons, 2012.
[31] Mihnea Popa. Let r be a ring with unity (identity). show that every
element of r is either a unit or a zero divisor if r is nite. http://
homepages.math.uic.edu/~radford/math516f06/WH4Sol.pdf.
[32] R Raghavendran. Finite associative rings. Compositio Mathematica,
21(2):195{229, 1969. Available at http://www.numdam.org/item?id=
CM_1969__21_2_195_0.
[33] Louis Halle Rowen et al. Ring theory, volume 1. Academic Press, 1988.
[34] Yaghoub Shari . Lifting idempotents modulo nil ide-
als. http://ysharifi.wordpress.com/2010/11/01/
lifting-idempotents-modulo-nil-ideals/, Nov. 2010.
[35] Timothy Wagner. Comaximal ideals in a commutative ring. http:
//math.stackexchange.com/questions/10400, Nov. 2010.