簡易檢索 / 詳目顯示

研究生: 王崧驊
Wang, Sung-Hua
論文名稱: 奈米鎂鐵氧化物之製備與特性分析
Preparation and characterization of nano-sized Mg-ferrite
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 鎂鐵氧吸附光催化
外文關鍵詞: MgFe2O4, adsorption, photocatalytic
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關以聚丙烯酸溶膠凝膠法製備MgFe2O4奈米粉體及其吸附與光催化特性之研究。首先利用聚丙烯酸螯合Mg(II)與Fe(III)金屬陽離子產生交聯,然後將形成之溶膠乾燥製得凝膠,並於500℃下鍛燒,即可製得MgFe2O4奈米粉體。由X光繞射(XRD)與穿透式電子顯微鏡(TEM)分析得知,所得奈米粉體為平均粒徑20.5 ± 5.7 nm、具有尖晶石結構之MgFe2O4。由表面積及傅立葉轉換紅外線(FT-IR)光譜儀分析可知,其比表面積約45.43 m2/g,且表面具有-OH官能基。此外,由界面電位及磁性分析可確認所得MgFe2O4奈米粉體之等電點約在6.2附近,飽和磁化量為18.4 emu/g。因所得MgFe2O4奈米粉體在酸性溶液中表面帶有正電荷,且為在可見光範圍具有顯著吸收之半導體材料,可能作為磁性可操控之陰離子吸附劑與可見光光觸媒,故本研究進一步探討其吸附與光催化特性。
    關於MgFe2O4奈米粉體吸附陰離子之特性研究,係以Cr(VI)為吸附對象。結果顯示,平衡所需時間約為45分鐘。pH越低時吸附量越大,此乃因pH值低於等電點時,MgFe2O4奈米粉體表面的-OH會傾向形成- OH2+,可藉由陰離子交換機制吸附Cr(VI)陰離子。又MgFe2O4奈米粉體吸附Cr(VI)遵守Langmuir恆溫吸附模式,在固定25℃、pH 4.5時其最大吸附容量和平衡常數分別為11.21 mg/g與0.07 L/mg。此外,在20~35℃範圍內,溫度效應並不顯著。關於MgFe2O4奈米粉體光催化特性之研究,係以分解玫瑰紅染料為例。結果顯示,MgFe2O4奈米粉體對玫瑰紅染料並無吸附能力,但可將玫瑰紅染料在可見光範圍之光分解速率常數顯著提升。

    This thesis concerns the preparation of MgFe2O4 nano-powders by the polyacrylic acid-based sol-gel method and their adsorption and photocatalytic properties. At first, polyacrylic acid was used for the chelation of Mg(II) and Fe(III) ions to result in the crosslinking. Then, the sol was dried to form the gel. MgFe2O4 nano-powders could be obtained by calcining the gel at 500°C. From XRD and TEM analyses, it was found the resultant nano-powders were MgFe2O4 with a mean diameter of 20.5 ± 5.7nm and a spinel structure. By the analyses of surface area and FT-IR spectrum, their specific surface area was determined to be 45.43 m2/g and –OH group was found on their surface. In addition, the zeta potential and magnetic analyses revealed that they had an isoelectric point of 6.2 and a saturation magnetization of 18.4 emu/g. Because the resultant MgFe2O4 nano-powders were positively charged in acid solution and were the semiconductor material with significant absorption in visible range which made them useful as the magnetically controllable anion adsorbent and the visible light photocatalyst, their adsorption and photocatalytic properties were further examined in this study.
    The adsorption capability of MgFe2O4 nano-powders for anions was examined using Cr(VI) ions as an example. It was found that the time required to achieve the equilibrium was about 45 min. As the pH decreased, the adsorption capacity increased. This could be attributed to the fact that, when the pH was less than their isoelectric point, the -OH group on the surface of MgFe2O4 nano-powders would be protonated to be - OH2+ group which could adsorb Cr(VI) ions via the anion exchange mechanism. The adsorption of Cr(VI) ions by MgFe2O4 nano-powders obeyed the Langmuir isotherm. At 25°C and pH 4.5, the maximum adsorption capacity and equilibrium constant were 11.21 mg/g and 0.07 L/mg, respectively. Moreover, in the range of 20-35°C, the temperature effect was not significant. The photocatalytic property of MgFe2O4 nano-powders was examined using the red dye rhodamine B as an example. It was found that MgFe2O4 nano-powders did not adsorb rhodamine B. However, the visible light photo-degradation rate of rhodamine B could be significantly enhanced by the presence of MgFe2O4 nano-powders.

    中文摘要……………………………………………...…………….. I 英文摘要……………………………………………...…………….. II 誌謝 IV 總目錄………………………………………………………………. V 表目錄………………………………………………...…………….. VIII 圖目錄………………………………………………...…………….. IX 符號…………………………………………………...…………….. XII 第一章 緒論 1.1 MgFe2O4 奈米粒子之簡介……………………….……………. 1 1.2 MgFe2O4 奈米粒子的製備…..……………...………………… 1 1.3研究目的與內容……...………………...……………….……... 5 第二章 基礎理論 2.1磁性理論………………………………………...…...…………. 7 2.1.1磁性來源…………………………..……………………….. 7 2.1.2磁性體分類………………………..………………………. 9 2.1.3 磁區與磁滯曲線………..……………………..…………. 12 2.1.4 磁性與粒徑的關係 14 2.2吸附理論……………………………………………………….. 16 2.2.1 吸附現象………………………………………………….. 16 2.2.2 恆溫吸附模式…………………………………………….. 16 2.3 光催化理論……………..……………………………………... 20 2.3.1 光催化反應………………………….……..….…………... 20 2.3.2 光催化反應種類……………………………..….………… 21 2.3.3 半導體光催化原理……………………….……….………. 21 2.3.4 影響光催化效率之因素……………………….…………. 23 2.3.4.1 能隙(band-gap) ……………………….……….……….. 23 2.3.4.2 電子電洞之捕捉效應(scavenging) ….……….………... 24 2.3.4.3 表面競爭吸附(competitive surface adsorption) ….…… 24 第三章 實驗 25 3.1實驗材料與儀器………………………………………..………. 25 3.1.1 藥品….…………………………………………………… 25 3.1.2 儀器….…………………………………………………… 26 3.1.3 材料….…………………………………………………… 28 3.2 MgFe2O4奈米粉體的製備.......................... ... 29 3.3特性分析………………………............................. 31 3.4 MgFe2O4吸附劑對金屬陰離子Cr(VI)之吸附反應…………… 34 3.5 MgFe2O4奈米粉體光觸媒催化反應裝置與分析…………….. 35 3.4.1 MgFe2O4奈米粒子之UV-Vis光觸媒分析……………….. 35 3.4.2 MgFe2O4奈米粒子之可見光光觸媒分析………………… 37 第四章 結果與討論 4.1 MgFe2O4奈米粒子特性分析……………….……..…………… 39 4.1.1 MgFe2O4奈米粒子TEM分析……………….……..…….. 39 4.1.2 MgFe2O4奈米粒子XRD結晶相鑑定……………….…….. 39 4.1.3 MgFe2O4奈米粒子之FT-IR光譜分析…………………… 41 4.1.4 MgFe2O4奈米粒子之BET比表面積分析……………….. 42 4.1.5 MgFe2O4奈米粒子之UV-Vis光譜分析………………….. 42 4.1.6 MgFe2O4奈米粒子之磁性分析…………………………… 43 4.2 MgFe2O4吸附劑之吸附分析…………………………………... 45 4.2.1 Cr(VI)陰離子在不同pH值下的型式…………………….. 45 4.2.2金屬陰離子Cr(VI)之吸附與脫附…………..……………... 47 4.3 MgFe2O4奈米粒子之光觸媒催化反應分析…………………... 57 4.3.1 MgFe2O4奈米粒子之光觸媒催化反應機制……………… 57 4.3.2 MgFe2O4奈米粒子之UV-Vis光觸媒分析………………. 61 4.3.3 MgFe2O4奈米粒子之可見光光觸媒分析………………… 64 第五章 總結論………………………………...………………….. 67 參考文獻……………………….............. ... 69 自述…………………………………………………………………. 73

    1. Bahadur, D. (1992) Bull. Mater. Sci. 15, 431-439
    2. Lee, H.; Kim, H.; Chung, Y. M.; Jung, J. C. (2008) Catal Lett 124, 364-368
    3. Joelle, A.; Tarek, G.; Aline, G.; Houssam, E. R. (2009) J. Mol. Catal. A Chem. 312, 18–22
    4. Jing, H.; Lo, I. M.C.; Chen, G. (2007) Sep. Purif. Technol. 56, 249–256
    5. Doroftei, C.; Rezlescu, E. (2006) J. Optoelectron. Adv. Mater. 8, 1012-1015
    6. Shi , Y.; Ding, J.; Liu, X.; Wang, J. (1999) J. Magn. Magn. Mater. 205, 249-254
    7. Ding, J.; McCormick, P. G.; Street, R. (1997) J. Magn. Magn. Mater. 171, 309-314
    8. Jae-Gwang Lee ; Hi Min Lee ; Chul Sung Kim ; Young-Jei (1998) J. Magn. Magn. Mater. 177-181, 900-902
    9. Jacobo, S. E.; Domingo-Pascual, C.; Blesa, M. A. (1997) J. Mater. Sci. 32, 1025-1028
    10. Davies, K. J.; Wells, S.; Upadhyay, R.V.; Charles, S.W.; O'Grady, K. (1995) J. Magn. Magn. Mater. 149, 14-18
    11. Suryanarayana, C. (2001) Progr. Mater. Sci. 46, 1-184
    12. 龔吉合 (1998) 材料科學導論,臺中:滄海。
    13. Kodama, R. H. (1999) J. Magn. Magn. Mater. 200, 359.
    14. Billas, I. M. L.; Châtelain, A.; de Heer, W. A. (1994) Science 265, 1682.
    15. Billas, I. M. L.; Châtelain, A.; de Heer, W. A. (1997) J. Magn. Magn. Mater. 168, 64.
    16. Freeman, A. J.; Fu, C. L.; Ohnishi, S.; Weinert, M. (1985) In : R. Feder ed. Singapore : World Scientific, 3-66.
    17. 馬振基 (2004) 奈米材料科技原理與應用,台北:全華。
    18. 張正武 (2004) FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文。
    19. Sorensen, C. M. (2001) Magnetism. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley Interscience, 169-222.
    20. Poole Jr., C. P.; Owens, F. J. (2003) Hoboken:John Wiley & Sons.
    21. Cullity, B. D. (1972) Introduction to Magnetic Materials. California:Addison-Wesley.
    22. 張煦、李學養 譯 (1982) 磁性物理學,臺北:聯經。
    23. 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文。
    24. 許克瀛 (2003) 單一散度高分子螯合顆粒之製備,私立中原大學化學工程研究所博士論文。
    25. Langmuir, I. (1918) J. Am. Chem. Soc. 40, 1361.
    26. Brunauer, S.; Emmett, P. H.; Teller, E. (1938) J. Am. Chem. Soc. 60, 309.
    27. Faust, S. D.; Aly, O. M. (1987) Boston:Butterworths, pp.16-21.
    28. Cullity, L. C. (1972) Introduction to Magnetic Materials, California: Addison-Wesley
    29. Frank, S. N.; Bard, A. J., (1977) J. Phys. Chem. 81, 1484.
    30. Skata, T.(1989) John Wiley & Sons, New York, 311-338.
    31. Amy L. Linsebigler. (1995) Chem. Rev. 95, 735-758.
    32. Zhang, Q.; Gao, L. (2000) Appl. Catal. B, 26, 207.
    33. 陳妙琪 (2003) 複合鍍TiO2-Ni光觸媒之製造與特性分析,國立交通大學材料科學與工程研究所博士論文。
    34. 何欣戎 (2000) 鋰錳氧及鎳鐵超微粉體之製備,國立成功大學化學工程研究所碩士論文。
    35. 莊浩宇 (2009) 二氧化鈦奈米粒子及其金屬核殼型奈米複合材料之製備與應用研究,國立成功大學化學工程研究所博士論文。
    36. Pradeep, A.; Priyadharsini, P.; Chandrasekaran, G. (2008) J. Magn. Magn. Mater. 320, 2774– 2779.
    37. Brunaller, S.; Emmett, P. H.; Teller, E. (1938) J. Am. Chem. Soc. 60, 390.
    38. Liana, A. R.; Leandro, J. M. (2010) J. Hazard. Mater. 173, 630–636.
    39. Wang, X. S.; Chen, L. F.; Li, F. Y. ;Chen, K. L. (2010) J. Hazard. Mater. 175, 816–822.
    40. Banerjee, S. S.; Joshi, M. V.; Jayaram, R. V. (2005) Sep. Sci. Technol. 39, 1611–1629.
    41. Jing, H.; Chen, G. (2007) Sep. Purif. Technol. 56, 249–256.
    42. Ngah, W. S. W.; Endud, C. S.; Mayanar, R. (2002) Funct. Polym. 50, 181.
    43. 張仕正 (2003) 在二氧化鈦上進行Salicylic acid可見光光催化反應的研究,國立中央大學化學工程與材料工程研究所碩士論文。
    44. Chuang, H. Y.; Chen, D. H. (2009) Nanotechnology 20, 105704.
    45. Hongjin Lv; Liang Ma; Peng Zeng; Dingning Kea (2010) J. Mater. Chem. 20, 3665–3672.
    46. 曾展晧 (2005) 以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,國立成功大學化學工程研究所碩士論文。
    47. Chatterjee, A.; Das, D.; Pradhan, D.; Chakravorty, D. (1993) J. Magn. Magn. Mater. 127, 214–218.
    48. Martin de Vidales, J.L.; Lo´pez-Delgado, A.; Vila, E.; Lo´pez, F.A. (1999) J. Alloys Compd. 287, 276–283.
    49. Yu, S.; Takahiro, F.; Masahiro, Y. (2003) J. Magn. Magn. Mater. 256, 420–424.
    50. Yan, S. C.; Li, Z. S.; Zou, Z. G. (2010) Langmuir. 26, 3894–3901.
    51. Banerjee, S. S.; Chen, D. H. (2007) J. Hazard. Mater. 147, 792–799
    52. Yusof, A.M.; Malek, N.A.N.N. (2009) J. Hazard. Mater. 162, 1019–1024
    53. 黃廷耀 (2009) 鋁基塊狀非晶合金之粉末冶金製程研究,大同大學材料工程研究所碩士論文。

    下載圖示
    2012-08-10公開
    QR CODE