簡易檢索 / 詳目顯示

研究生: 黃建豪
Huang, Jian-Hao
論文名稱: 介白素二十四在肺纖維化之研究
The Study of Interleukin-24 in Pulmonary Fibrosis
指導教授: 張明熙
Chang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 肺纖維化博來黴素介白素二十四細胞程式死亡受體-1
外文關鍵詞: Pulmonary fibrosis, Bleomycin, Interleukin-24, PD-1
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺纖維化是一種慢性漸進式發炎疾病並伴隨著高死亡率,近來其好發率也持續攀升。而引起肺纖維化的原因很多,包括吸煙,藥物,衰老,遺傳缺陷和環境因素等。當前大流行的新型冠狀病毒(2019-nCoV)的感染也會導致患者肺纖維化。異常進行組織修復與發炎所引起的肺部細胞外基質堆積是常見的臨床病徵,從而導致肺功能障礙。迄今為止,尚無有效的藥物可以治療肺纖維化。因此,探索肺纖維化的詳細致病機轉對藥物開發具有重要意義。介白素-24與介白素-20共用相同的接收器複合物,包括IL-20R1 / IL-20R2和IL-22R1 / IL-20R2,以執行其生物功能。先前,IL-24被認為是一重要的多功能免疫調節細胞因子。在這項研究中,我們旨在探討IL-24是否參與在發炎引起的肺纖維化病程之中。透過bleomycin所誘導的肺纖維化小鼠模式分析,我們發現給予重組IL-24蛋白能夠有效地保護小鼠免於肺纖維化。進一步我們經由in vitro實驗探討其分子機制。根據實驗結果,我們提出IL-24能夠治療肺纖維化的三條可能路徑。其一,藉由抑制肺泡上皮細胞產生相關促纖維化因子,並阻止其透過EMT機制轉化為成纖維母細胞。其二,抑制肺泡組織間M2巨噬細胞之浸潤,但其分子機制仍需進一步深入探討。其三,透過抑制肺臟中CD4+ T細胞PD-1的表達,並且經由調控轉錄因子NFATc1進而達到抑制PD-1的表現。我們認為IL-24在未來有可能可以作為一潛力藥物來治療肺纖維化。

    Pulmonary fibrosis is a chronic and progressive inflammatory disease with the high mortality rate and its incidence continues to rise recently. There are many risk factors for pulmonary fibrosis, including smoking, drugs, aging, genetic defects and environmental factors. Current pandemic infection of the new type coronavirus (2019-nCoV) also caused pulmonary fibrosis in patients. Accumulation of extracellular matrix (ECM) in the lung caused by abnormal tissue repair and the inflammation is the common clinical outcome, leading to pulmonary dysfunction. Up to now, there is no effective drug for treating pulmonary fibrosis. Therefore, it is important to explore the detailed pathogenic mechanism of pulmonary fibrosis for drug development. Interleukin-24 (IL-24) shares the same receptor complexes with IL-20, including IL-20R1/IL-20R2 and IL-22R1/IL-20R2, to perform biological functions. Previously, IL-24 was considered to be an important pleiotropic immune-regulatory cytokine. In this study, we are aimed to investigate whether IL-24 is involved in the progression of pulmonary fibrosis. By analyzing bleomycin-induced mice model, we showed that administration of recombinant IL-24 could effectively protect mice from pulmonary fibrosis. We further explored the molecular mechanism through in vitro experiments. Based on the results, we proposed three possible pathways by which IL-24 protects against pulmonary fibrosis. First, IL-24 inhibits production of profibrogenic factors by alveolar epithelial cells and prevents EMT process. Second, the infiltration of M2 macrophages was blocked by IL-24 treatment. However its molecular mechanism still needs further investigation. Third, IL-24 regulates the transcription factor NFATc1 to suppress the expression of PD-1 on CD4+ T cells in the lung. We conclude that IL-24 may be a potential drug to treat pulmonary fibrosis in the future.

    摘要 I ABSTRACT II 致謝 III 總目錄 IV 圖表目錄 VIII 附錄目錄 X 縮寫檢索表 XI 第一章 緒論 1 1-1. 特發性肺纖維化 1 1-2. BLEOMYCIN引起之肺纖維化 1 1-3. 細胞因子與其接收器 2 1-4. 介白素-10家族 2 1-5. 介白素-24 3 1-6. 特發性肺纖維化與細胞因子 3 第二章 研究動機與目的 5 第三章 材料與方法 6 3-1. 實驗材料 6 3-1-1. 動物來源 6 3-1-2. 細胞株來源 6 3-1-3. 實驗藥品及試劑 6 3-1-4. 實驗套組(Kit) 7 3-1-5. 重組蛋白及抗體來源 7 3-1-6. 實驗儀器 8 3-1-7. 實驗試劑配置 9 3-2. 實驗方法 11 3-2-1. 免疫組織化學染色法 (immunohistochemistry,ICC) 11 3-2-2. 動物實驗 12 3-2-3. 小鼠肺功能量測 13 3-2-4. Sirius Red染色法 13 3-2-5. Periodic Acid-Schiff (PAS) 染色法 13 3-2-6. BMDMs細胞製備 14 3-2-7. 小鼠肺臟CD4 T細胞分離 14 3-2-8. 細胞實驗 14 3-2-9. 免疫細胞化學染色(immunocytochemistry,ICC) 15 3-2-10. 同步定量聚合酶鏈鎖反應 (real-time PCR) 15 第四章 實驗結果 17 4-1. 特發性肺纖維化病人肺部IL-24表現量降低 17 4-2. BLEOMYCIN誘導肺纖維化小鼠動物模式IL-24表現量下降 17 4-2-1. 肺纖維化小鼠動物模式建立 17 4-2-2. Bleomycin引起小鼠肺臟組織中細胞外基質堆積 18 4-2-3. Bleomycin誘導之肺纖維化促使IL-24表現量降低 18 4-3. 重組IL-24蛋白保護小鼠免於BLEOMYCIN誘發之肺纖維化 18 4-3-1. 重組IL-24蛋白減緩bleomycin引起之小鼠體重下降 18 4-3-2. 重組IL-24蛋白降低bleomycin引起之肺部發炎情形 19 4-3-3. 重組IL-24蛋白抑制肺部纖維化組織增生 19 4-3-4. 重組IL-24蛋白抑制氣管發炎及黏液產生 19 4-3-5. 重組IL-24蛋白降低促纖維化因子的表達 20 4-3-6. 重組IL-24蛋白抑制小鼠肺部細胞外基質之堆積 20 4-3-7. 重組IL-24蛋白保護小鼠肺功能免於bleomycin引起之下降 21 4-3-8. 重組IL-24蛋白在bleomycin所引起之長期小鼠肺纖維化動物模式中具有治療效果 21 4-4. 重組IL-24蛋白抑制A549細胞株上皮-間質細胞轉化 22 4-4-1. A549細胞株具有IL-24之接收器 22 4-4-2. 重組IL-24蛋白抑制A549細胞株上調促纖維化因子 23 4-4-3. 重組IL-24蛋白抑制bleomycin引起的A549細胞株形態改變 23 4-5. 重組IL-24蛋白抑制M2巨噬細胞浸潤肺部 24 4-5-1. 重組IL-24蛋白抑制小鼠肺部M2巨噬細胞浸潤 24 4-5-2. Bleomycin無法直接介導巨噬細胞極化成M2型態 24 4-6. 重組IL-24蛋白降低肺纖維化小鼠肺部PD-1之表達 25 4-6-1. 重組IL-24蛋白抑制小鼠肺部纖維化引起之PD-1上調 25 4-6-2. 重組IL-24蛋白降低高表達PD-1之CD4+ T細胞數量 25 4-7. 重組IL-24蛋白調控T細胞PD-1之表達 26 4-7-1. EL4細胞株具有IL-24之接收器並能透過藥物上調其PD-1表現 26 4-7-2. 重組IL-24蛋白調控轉錄因子NFATc1抑制T細胞PD-1上調 26 第五章 討論 28 參考文獻 33 實驗結果圖與圖說 38 附錄 64 自述 67

    1. Wallace, W.A., et al., Inflammation-associated remodelling and fibrosis in the lung - a process and an end point. Int J Exp Pathol, 2007. 88(2): p. 103-10.
    2. Kogan, E.A., F.V. Tyong, and S.A. Demura, [The mechanism of lung tissue remodeling in the progression of idiopathic pulmonary fibrosis]. Arkh Patol, 2010. 72(4): p. 30-6.
    3. Morales, M.M., et al., Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue. Crit Care, 2011. 15(1): p. R4.
    4. Herrera, J., C.A. Henke, and P.B. Bitterman, Extracellular matrix as a driver of progressive fibrosis. J Clin Invest, 2018. 128(1): p. 45-53.
    5. King, T.E., Jr., et al., A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med, 2014. 370(22): p. 2083-92.
    6. Koo, S.M., et al., Relationship between survival and age in patients with idiopathic pulmonary fibrosis. J Thorac Dis, 2016. 8(11): p. 3255-3264.
    7. Glassberg, M.K., Overview of idiopathic pulmonary fibrosis, evidence-based guidelines, and recent developments in the treatment landscape. Am J Manag Care, 2019. 25(11 Suppl): p. S195-S203.
    8. Garcia-Sancho, C., et al., Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respir Med, 2011. 105(12): p. 1902-7.
    9. Baumgartner, K.B., et al., Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 1997. 155(1): p. 242-8.
    10. Selman, M., C. Lopez-Otin, and A. Pardo, Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir J, 2016. 48(2): p. 538-52.
    11. Sun, B., et al., Short-term PM2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. J Hazard Mater, 2020. 385: p. 121566.
    12. Lai, C.C., et al., Idiopathic pulmonary fibrosis in Taiwan - a population-based study. Respir Med, 2012. 106(11): p. 1566-74.
    13. George, P.M., A.U. Wells, and R.G. Jenkins, Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med, 2020.
    14. Kawai, K. and H. Akaza, Bleomycin-induced pulmonary toxicity in chemotherapy for testicular cancer. Expert Opin Drug Saf, 2003. 2(6): p. 587-96.
    15. Lazo, J.S. and C.J. Humphreys, Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci U S A, 1983. 80(10): p. 3064-8.
    16. Williamson, J.D., L.R. Sadofsky, and S.P. Hart, The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res, 2015. 41(2): p. 57-73.
    17. Zhang, J.M. and J. An, Cytokines, inflammation, and pain. Int Anesthesiol Clin, 2007. 45(2): p. 27-37.
    18. Matera, L., Endocrine, paracrine and autocrine actions of prolactin on immune cells. Life Sci, 1996. 59(8): p. 599-614.
    19. Kany, S., J.T. Vollrath, and B. Relja, Cytokines in Inflammatory Disease. Int J Mol Sci, 2019. 20(23).
    20. Burmeister, A.R. and I. Marriott, The Interleukin-10 Family of Cytokines and Their Role in the CNS. Front Cell Neurosci, 2018. 12: p. 458.
    21. Trinchieri, G., Interleukin-10 production by effector T cells: Th1 cells show self control. J Exp Med, 2007. 204(2): p. 239-43.
    22. Sheikhpour, E., et al., A Survey on the Role of Interleukin-10 in Breast Cancer: A Narrative. Rep Biochem Mol Biol, 2018. 7(1): p. 30-37.
    23. Jiang, H., et al., Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene, 1995. 11(12): p. 2477-86.
    24. Wang, M. and P. Liang, Interleukin-24 and its receptors. Immunology, 2005. 114(2): p. 166-70.
    25. Menezes, M.E., et al., MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol, 2014. 818: p. 127-53.
    26. Persaud, L., et al., Mechanism of Action and Applications of Interleukin 24 in Immunotherapy. Int J Mol Sci, 2016. 17(6).
    27. Bastonero, S., et al., New microbicidal functions of tracheal glands: defective anti-infectious response to Pseudomonas aeruginosa in cystic fibrosis. PLoS One, 2009. 4(4): p. e5357.
    28. Jamhiri, I., et al., The pattern of IL-24/mda-7 and its cognate receptors expression following activation of human hepatic stellate cells. Biomed Rep, 2017. 7(2): p. 173-178.
    29. Zhang, K. and S.H. Phan, Cytokines and pulmonary fibrosis. Biol Signals, 1996. 5(4): p. 232-9.
    30. Yue, X., B. Shan, and J.A. Lasky, TGF-beta: Titan of Lung Fibrogenesis. Curr Enzym Inhib, 2010. 6(2).
    31. Saito, A., et al., The Role of TGF-beta Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis. Int J Mol Sci, 2018. 19(11).
    32. Barbarin, V., et al., Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol, 2005. 288(5): p. L841-8.
    33. Liang, M., et al., Interleukin-22 inhibits bleomycin-induced pulmonary fibrosis. Mediators Inflamm, 2013. 2013: p. 209179.
    34. Sauer, K.A., et al., Isolation of CD4+ T cells from murine lungs: a method to analyze ongoing immune responses in the lung. Nat Protoc, 2006. 1(6): p. 2870-5.
    35. Homer, R.J., et al., Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med, 2011. 135(6): p. 780-8.
    36. Carrington, R., et al., Use of animal models in IPF research. Pulm Pharmacol Ther, 2018. 51: p. 73-78.
    37. Liu, T., F.G. De Los Santos, and S.H. Phan, The Bleomycin Model of Pulmonary Fibrosis. Methods Mol Biol, 2017. 1627: p. 27-42.
    38. Ballester, B., J. Milara, and J. Cortijo, Mucins as a New Frontier in Pulmonary Fibrosis. J Clin Med, 2019. 8(9).
    39. Hancock, L.A., et al., Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice. Nat Commun, 2018. 9(1): p. 5363.
    40. Kim, V. and G.J. Criner, Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2013. 187(3): p. 228-37.
    41. Camelo, A., et al., The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol, 2014. 4: p. 173.
    42. Olajuyin, A.M., X. Zhang, and H.L. Ji, Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov, 2019. 5: p. 63.
    43. Sakai, N. and A.M. Tager, Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. Biochim Biophys Acta, 2013. 1832(7): p. 911-21.
    44. Hou, J., et al., M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal, 2018. 16(1): p. 89.
    45. Murray, L.A., et al., TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int J Biochem Cell Biol, 2011. 43(1): p. 154-62.
    46. Yao, Y., X.H. Xu, and L. Jin, Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol, 2019. 10: p. 792.
    47. Kolb, M., et al., Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest, 2001. 107(12): p. 1529-36.
    48. Lappalainen, U., et al., Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol, 2005. 32(4): p. 311-8.
    49. Simonian, P.L., et al., gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med, 2010. 207(10): p. 2239-53.
    50. Celada, L.J., et al., PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-beta1 production. Sci Transl Med, 2018. 10(460).
    51. Ni, K., et al., PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. Am J Respir Cell Mol Biol, 2018. 58(6): p. 684-695.
    52. Duitman, J., T. van den Ende, and C.A. Spek, Immune Checkpoints as Promising Targets for the Treatment of Idiopathic Pulmonary Fibrosis? J Clin Med, 2019. 8(10).
    53. Oestreich, K.J., et al., NFATc1 regulates PD-1 expression upon T cell activation. J Immunol, 2008. 181(7): p. 4832-9.
    54. Hsu, Y.H., et al., Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum, 2006. 54(9): p. 2722-33.
    55. Hsu, Y.H., et al., Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med, 2011. 208(9): p. 1849-61.
    56. Hsu, Y.H., et al., Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol, 2012. 188(4): p. 1981-91.
    57. Hsu, Y.H., et al., Anti-IL-20 monoclonal antibody alleviates inflammation in oral cancer and suppresses tumor growth. Mol Cancer Res, 2012. 10(11): p. 1430-9.
    58. Hsu, Y.H., et al., Anti-IL-20 Monoclonal Antibody Suppresses Prostate Cancer Growth and Bone Osteolysis in Murine Models. PLoS One, 2015. 10(10): p. e0139871.
    59. Chiu, Y.S., et al., Anti-IL-20 monoclonal antibody inhibited tumor growth in hepatocellular carcinoma. Sci Rep, 2017. 7(1): p. 17609.
    60. Chiu, Y.S., et al., IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology, 2014. 60(3): p. 1003-14.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE