簡易檢索 / 詳目顯示

研究生: 曾昱豪
Tzeng, Yu-Hau
論文名稱: GP-1誘發人類肝癌細胞凋亡之作用機轉
A novel natural product GP-1 induces apoptosis in human hepatocellular carcinoma cells
指導教授: 翁舷誌
Won, Shen-Jeu
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 72
中文關鍵詞: 人類肝癌細胞凋亡作用機轉
外文關鍵詞: apoptosis, natural product, human hepatocellular carcinoma
相關次數: 點閱:57下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類肝癌在全球好發癌症中排名第五位,並在癌症致死率中排名上升至第三位,然而目前對於肝癌的治療及預後效果仍不盡人意。過去原住民普遍有利用煎煮福木果實來做藥的偏方來針對疑難雜症進行治療,近年來的文獻也記載福木的果實及樹皮萃取物中具有抑制DNA topoisomerase、抗發炎及對腫瘤細胞具毒殺特性的物質存在。本篇論文所使用的GP-1是由福木的果皮中萃取出的單一天然物質,在處理人類肝癌Hep-3B細胞後能抑制其生長,六天後其抑制Hep-3B細胞50%細胞生長濃度(IC50)為12.84M。以GP-1處理Hep-3B細胞之後發現細胞sub-G1期DNA比例的增加、DNA有片段化等細胞凋亡時的現象出現,因而得知GP-1可透過引發凋亡的機制而抑制Hep-3B細胞生長;以西方墨點法分析GP-1誘導Hep-3B細胞凋亡的途徑,發現有caspase-2及caspase-8的活化,細胞質中Bid的表現量減少,另以DiOC6(3)進行染色,發現粒線體膜電位的喪失,cytochrome c以及Smac/DIABLO自粒線體釋放至細胞質中,活化caspase-9及caspase-3並抑制XIAP表現,而細胞核內AIF以及DFF40的表現都有增加的趨勢。本實驗發現GP-1能引起粒線體膜電位的改變並透過caspase cascade造成Hep-3B細胞的細胞凋亡,本研究結果描繪出GP-1誘導Hep-3B細胞凋亡的訊息傳遞路徑,期望在將來可供抗癌藥物研發及臨床用藥之參考。

    Human hepatocellular carcinoma (HCC) is the fifth most frequent cancer and is the third most common cause of cancer-related death worldwide. Unfortunately, it does not response well to chemotherapy and has a poor prognosis of patients. The crude extract of the pericarp of Garcinia subelliptica (G. subelliptica) is a remedy commonly using to treat patients of aborigine in Taiwan. Previous studies have reported that constituents of the wood and root bark of G. subelliptica containing some compounds possess inhibitory activity against DNA topoisomerase, and the anti-inflammatory activity. Recent study has shown that a new benzoylphloroglucinol, garcinielliptone FB extracted from the pericarp of G. subelliptica exhibits cytotoxic activity against several tumor cells. The present study demonstrates that GP-1, a novel pure compound isolated from G. subelliptica, inhibited growth of HCC Hep-3B cells with the IC50 of 12.84 M at day 6 of post-treatment. This inhibitory effect may be due to the process of apoptosis which was characterized by increase of sub-G1 DNA content and production of DNA fragments. The mechanism of apoptosis may be associated with the activation of caspase-2 and caspase-8, decrease cytosolic Bid, loss of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO to cytosol, decrease of XIAP, induction of caspase-9 and caspase-3, and elevation of nuclear DFF40. Moreover, AIF was released from mitochondria and entered to the nucleus in response to GP-1. These findings described the signaling pathway in GP-1 treated Hep-3B cells, and may provide a new sight of anti-cancer drug for clinical use.

    中文摘要...................Ⅰ 英文摘要...................Ⅱ 緒論.....................1 材料與方法..................18 結果.....................33 討論.....................38 參考文獻...................46 圖......................56

    Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423-432.
    Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.
    Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J. C., Cecconi, F., and Youle, R. J. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. Embo J 22, 4385-4399.
    Arnoult, D., Parone, P., Martinou, J. C., Antonsson, B., Estaquier, J., and Ameisen, J. C. (2002). Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 159, 923-929.
    Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308.
    Baliga, B., and Kumar, S. (2003). Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ 10, 16-18.
    Barnhart, B. C., Alappat, E. C., and Peter, M. E. (2003). The CD95 type I/type II model. Semin Immunol 15, 185-193.
    Bedner, E., Li, X., Gorczyca, W., Melamed, M. R., and Darzynkiewicz, Z. (1999). Analysis of apoptosis by laser scanning cytometry. Cytometry 35, 181-195.
    Bismuth, H., and Majno, P. E. (2000). Hepatobiliary surgery. J Hepatol 32, 208-224.
    Block, T. M., Mehta, A. S., Fimmel, C. J., and Jordan, R. (2003). Molecular viral oncology of hepatocellular carcinoma. Oncogene 22, 5093-5107.
    Chan, S. L., and Yu, V. C. (2004). Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 31, 119-128.
    Chao, D. T., and Korsmeyer, S. J. (1998). BCL-2 family: regulators of cell death. Annu Rev Immunol 16, 395-419.
    Chi-Man Tang, T., Tung-Ping Poon, R., and Fan, S. T. (2005). The significance of cyclooxygenase-2 expression in human hepatocellular carcinoma. Biomed Pharmacother 59 Suppl 2, S311-316.
    Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512.
    Corcoran, G. B., Fix, L., Jones, D. P., Moslen, M. T., Nicotera, P., Oberhammer, F. A., and Buttyan, R. (1994). Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol 128, 169-181.
    Cormier, J. N., Thomas, K. T., Chari, R. S., and Pinson, C. W. (2006). Management of hepatocellular carcinoma. J Gastrointest Surg 10, 761-780.
    Cregan, S. P., Dawson, V. L., and Slack, R. S. (2004). Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23, 2785-2796.
    Degterev, A., Boyce, M., and Yuan, J. (2003). A decade of caspases. Oncogene 22, 8543-8567.
    Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B., and Martinou, J. C. (1999). Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144, 891-901.
    Deveraux, Q. L., and Reed, J. C. (1999). IAP family proteins--suppressors of apoptosis. Genes Dev 13, 239-252.
    Deveraux, Q. L., Takahashi, R., Salvesen, G. S., and Reed, J. C. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-304.
    Di Bisceglie, A. M. (2002). Epidemiology and clinical presentation of hepatocellular carcinoma. J Vasc Interv Radiol 13, S169-171.
    Donepudi, M., Mac Sweeney, A., Briand, C., and Grutter, M. G. (2003). Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 11, 543-549.
    Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.
    El-Shanawani, F. M., Abdel-Hadi, A. A., Abu Zikri, N. B., Ismail, A., El-Ansary, M., and El-Raai, A. (2006). Clinical significance of aflatoxin, mutant P53 gene and sIL-2 receptor in liver cirrhosis and hepatocellular carcinoma. J Egypt Soc Parasitol 36, 221-239.
    Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43-50.
    Fawthrop, D. J., Boobis, A. R., and Davies, D. S. (1991). Mechanisms of cell death. Arch Toxicol 65, 437-444.
    Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1994). CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269, 30761-30764.
    Ferri, K. F., and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255-263.
    Fumarola, C., and Guidotti, G. G. (2004). Stress-induced apoptosis: toward a symmetry with receptor-mediated cell death. Apoptosis 9, 77-82.
    Garcea, G., Lloyd, T. D., Aylott, C., Maddern, G., and Berry, D. P. (2003). The emergent role of focal liver ablation techniques in the treatment of primary and secondary liver tumours. Eur J Cancer 39, 2150-2164.
    Green, D. R. (2000). Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1-4.
    Green, D. R., and Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science 305, 626-629.
    Green, D. R., and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.
    Grinberg, M., Sarig, R., Zaltsman, Y., Frumkin, D., Grammatikakis, N., Reuveny, E., and Gross, A. (2002). tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem 277, 12237-12245.
    Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T., and Alnemri, E. S. (2002). Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277, 13430-13437.
    Halenbeck, R., MacDonald, H., Roulston, A., Chen, T. T., Conroy, L., and Williams, L. T. (1998). CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr Biol 8, 537-540.
    Hasenjager, A., Gillissen, B., Muller, A., Normand, G., Hemmati, P. G., Schuler, M., Dorken, B., and Daniel, P. T. (2004). Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-x(L) in a strictly caspase-3-dependent manner in human carcinoma cells. Oncogene 23, 4523-4535.
    Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S., Fernandes-Alnemri, T., and Alnemri, E. S. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277, 432-438.
    Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407, 770-776.
    Hong, S. J., Dawson, T. M., and Dawson, V. L. (2004). Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25, 259-264.
    Iinuma, M., Tosa, H., Tanaka, T., Kanamaru, S., Asai, F., Kobayashi, Y., Miyauchi, K., and Shimano, R. (1996). Antibacterial activity of some Garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 19, 311-314.
    Ikai, I., Yamamoto, Y., Ozaki, N., Sakai, Y., Shimahara, Y., and Yamaoka, Y. (1997). [Surgical therapy for hepatocellular carcinoma with liver cirrhosis]. Nippon Geka Gakkai Zasshi 98, 691-696.
    Jaattela, M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746-2756.
    Jiang, X., and Wang, X. (2000). Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275, 31199-31203.
    Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257.
    Kihlmark, M., Rustum, C., Eriksson, C., Beckman, M., Iverfeldt, K., and Hallberg, E. (2004). Correlation between nucleocytoplasmic transport and caspase-3-dependent dismantling of nuclear pores during apoptosis. Exp Cell Res 293, 346-356.
    Kim, R., Emi, M., and Tanabe, K. (2005). Caspase-dependent and -independent cell death pathways after DNA damage (Review). Oncol Rep 14, 595-599.
    Kim, R., Emi, M., and Tanabe, K. (2006). Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57, 545-553.
    Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H., and Peter, M. E. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14, 5579-5588.
    Klein, J. A., Longo-Guess, C. M., Rossmann, M. P., Seburn, K. L., Hurd, R. E., Frankel, W. N., Bronson, R. T., and Ackerman, S. L. (2002). The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419, 367-374.
    Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., and Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7, 1166-1173.
    Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G., and Jenkins, N. A. (1994). Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8, 1613-1626.
    Lassus, P., Opitz-Araya, X., and Lazebnik, Y. (2002). Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352-1354.
    Lechardeur, D., Drzymala, L., Sharma, M., Zylka, D., Kinach, R., Pacia, J., Hicks, C., Usmani, N., Rommens, J. M., and Lukacs, G. L. (2000). Determinants of the nuclear localization of the heterodimeric DNA fragmentation factor (ICAD/CAD). J Cell Biol 150, 321-334.
    Levrero, M. (2006). Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25, 3834-3847.
    Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.
    Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99.
    Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
    Lin, X. D., and Lin, L. W. (2006). Local injection therapy for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 5, 16-21.
    Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
    Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W. T., and Wang, X. (1998). The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A 95, 8461-8466.
    Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175-184.
    Liu, X., Zou, H., Widlak, P., Garrard, W., and Wang, X. (1999). Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem 274, 13836-13840.
    Llovet, J. M., Fuster, J., and Bruix, J. (2004). The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl 10, S115-120.
    Loeffler, M., Daugas, E., Susin, S. A., Zamzami, N., Metivier, D., Nieminen, A. L., Brothers, G., Penninger, J. M., and Kroemer, G. (2001). Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. Faseb J 15, 758-767.
    Lu, Q., Harrington, E. O., and Rounds, S. (2005). Apoptosis and lung injury. Keio J Med 54, 184-189.
    Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
    Majno, G., and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146, 3-15.
    Minami, H., Takahashi, E., Fukuyama, Y., Kodama, M., Yoshizawa, T., and Nakagawa, K. (1995). Novel xanthones with superoxide scavenging activity from Garcinia subelliptica. Chem Pharm Bull (Tokyo) 43, 347-349.
    Miramar, M. D., Costantini, P., Ravagnan, L., Saraiva, L. M., Haouzi, D., Brothers, G., Penninger, J. M., Peleato, M. L., Kroemer, G., and Susin, S. A. (2001). NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276, 16391-16398.
    Mukae, N., Enari, M., Sakahira, H., Fukuda, Y., Inazawa, J., Toh, H., and Nagata, S. (1998). Molecular cloning and characterization of human caspase-activated DNase. Proc Natl Acad Sci U S A 95, 9123-9128.
    Mulcahy, M. F. (2005). Management of hepatocellular cancer. Curr Treat Options Oncol 6, 423-435.
    Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85, 817-827.
    Newmeyer, D. D., and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-490.
    Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., and et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37-43.
    Oberhammer, F., Wilson, J. W., Dive, C., Morris, I. D., Hickman, J. A., Wakeling, A. E., Walker, P. R., and Sikorska, M. (1993). Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. Embo J 12, 3679-3684.
    Ong, G. Y., Changchien, C. S., Lee, C. M., Wang, J. H., Tung, H. D., Chuah, S. K., Chiu, K. W., Chiou, S. S., Cheng, Y. F., and Lu, S. N. (2004). Liver abscess complicating transcatheter arterial embolization: a rare but serious complication. A retrospective study after 3878 procedures. Eur J Gastroenterol Hepatol 16, 737-742.
    Pagliari, L. J., Kuwana, T., Bonzon, C., Newmeyer, D. D., Tu, S., Beere, H. M., and Green, D. R. (2005). The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci U S A 102, 17975-17980.
    Paroni, G., Henderson, C., Schneider, C., and Brancolini, C. (2001). Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 276, 21907-21915.
    Patt, Y. Z., Charnsangavej, C., Yoffe, B., Smith, R., Lawrence, D., Chuang, V., Carrasco, H., Roh, M., Chase, J., Fischer, H., and et al. (1994). Hepatic arterial infusion of floxuridine, leucovorin, doxorubicin, and cisplatin for hepatocellular carcinoma: effects of hepatitis B and C viral infection on drug toxicity and patient survival. J Clin Oncol 12, 1204-1211.
    Peter, M. E., and Krammer, P. H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10, 26-35.
    Robertson, J. D., Gogvadze, V., Kropotov, A., Vakifahmetoglu, H., Zhivotovsky, B., and Orrenius, S. (2004). Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 5, 643-648.
    Roth, W., and Reed, J. C. (2002). Apoptosis and cancer: when BAX is TRAILing away. Nat Med 8, 216-218.
    Sakahira, H., Enari, M., and Nagata, S. (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96-99.
    Sakamoto, I., Aso, N., Nagaoki, K., Matsuoka, Y., Uetani, M., Ashizawa, K., Iwanaga, S., Mori, M., Morikawa, M., Fukuda, T., et al. (1998). Complications associated with transcatheter arterial embolization for hepatic tumors. Radiographics 18, 605-619.
    Shi, Y. (2002a). A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9, 93-95.
    Shi, Y. (2002b). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9, 459-470.
    Shimizu, S., Narita, M., and Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487.
    Shiozaki, E. N., Chai, J., Rigotti, D. J., Riedl, S. J., Li, P., Srinivasula, S. M., Alnemri, E. S., Fairman, R., and Shi, Y. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11, 519-527.
    Soldani, C., Lazze, M. C., Bottone, M. G., Tognon, G., Biggiogera, M., Pellicciari, C. E., and Scovassi, A. I. (2001). Poly(ADP-ribose) polymerase cleavage during apoptosis: when and where? Exp Cell Res 269, 193-201.
    Song, Z., Yao, X., and Wu, M. (2003). Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278, 23130-23140.
    Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri, E. S. (1998). Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1, 949-957.
    Stennicke, H. R., Deveraux, Q. L., Humke, E. W., Reed, J. C., Dixit, V. M., and Salvesen, G. S. (1999). Caspase-9 can be activated without proteolytic processing. J Biol Chem 274, 8359-8362.
    Susin, S. A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K. F., Irinopoulou, T., Prevost, M. C., et al. (2000). Two distinct pathways leading to nuclear apoptosis. J Exp Med 192, 571-580.
    Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446.
    Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M., and Kroemer, G. (1996). Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184, 1331-1341.
    Sutcliffe, R., Maguire, D., Portmann, B., Rela, M., and Heaton, N. (2006). Selection of patients with hepatocellular carcinoma for liver transplantation. Br J Surg 93, 11-18.
    Thorgeirsson, S. S., and Grisham, J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31, 339-346.
    Thornberry, N. A., and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312-1316.
    Tinel, A., and Tschopp, J. (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843-846.
    Tosa, H., Iinuma, M., Asai, F., Tanaka, T., Nozaki, H., Ikeda, S., Tsutsui, K., Tsutsui, K., Yamada, M., and Fujimori, S. (1998). Anthraquinones from Neonauclea calycina and their inhibitory activity against DNA topoisomerase II. Biol Pharm Bull 21, 641-642.
    Tounekti, O., Belehradek, J., Jr., and Mir, L. M. (1995). Relationships between DNA fragmentation, chromatin condensation, and changes in flow cytometry profiles detected during apoptosis. Exp Cell Res 217, 506-516.
    Troy, C. M., and Shelanski, M. L. (2003). Caspase-2 redux. Cell Death Differ 10, 101-107.
    Vaux, D. L., and Korsmeyer, S. J. (1999). Cell death in development. Cell 96, 245-254.
    Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J., and Vaux, D. L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53.
    Vyssokikh, M. Y., and Brdiczka, D. (2003). The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50, 389-404.
    Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J. (1994). Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78, 739-750.
    Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922-2933.
    Weng, J. R., Lin, C. N., Tsao, L. T., and Wang, J. P. (2003). Novel and anti-inflammatory constituents of Garcinia subelliptica. Chemistry 9, 1958-1963.
    Weng, J. R., Tsao, L. T., Wang, J. P., Wu, R. R., and Lin, C. N. (2004). Anti-inflammatory phloroglucinols and terpenoids from Garcinia subelliptica. J Nat Prod 67, 1796-1799.
    Widlak, P., and Garrard, W. T. (2001). Ionic and cofactor requirements for the activity of the apoptotic endonuclease DFF40/CAD. Mol Cell Biochem 218, 125-130.
    Widlak, P., Lanuszewska, J., Cary, R. B., and Garrard, W. T. (2003). Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis. J Biol Chem 278, 26915-26922.
    Widlak, P., Li, P., Wang, X., and Garrard, W. T. (2000). Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 275, 8226-8232.
    Wong, C. H., Chan, S. K., Chan, H. L., Tsui, S. K., and Feitelson, M. (2006). The molecular diagnosis of hepatitis B virus-associated hepatocellular carcinoma. Crit Rev Clin Lab Sci 43, 69-101.
    Woo, E. J., Kim, Y. G., Kim, M. S., Han, W. D., Shin, S., Robinson, H., Park, S. Y., and Oh, B. H. (2004). Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol Cell 14, 531-539.
    Wu, C. C., Weng, J. R., Won, S. J., and Lin, C. N. (2005). Constituents of the pericarp of Garcinia subelliptica. J Nat Prod 68, 1125-1127.
    Wyllie, A. H., Kerr, J. F., and Currie, A. R. (1980). Cell death: the significance of apoptosis. Int Rev Cytol 68, 251-306.
    Yang, H. I., Lu, S. N., Liaw, Y. F., You, S. L., Sun, C. A., Wang, L. Y., Hsiao, C. K., Chen, P. J., Chen, D. S., and Chen, C. J. (2002). Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 347, 168-174.
    Yin, X. M. (2000). Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF-R1 death receptors in hepatocytes. J Mol Med 78, 203-211.
    You, K. R., Shin, M. N., Park, R. K., Lee, S. O., and Kim, D. G. (2001). Activation of caspase-8 during N-(4-hydroxyphenyl)retinamide-induced apoptosis in Fas-defective hepatoma cells. Hepatology 34, 1119-1127.
    Yu, A. S., and Keeffe, E. B. (2003). Management of hepatocellular carcinoma. Rev Gastroenterol Disord 3, 8-24.
    Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259-263.
    Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652.
    Zhang, X., Uthaisang, W., Hu, L., Ernberg, I. T., and Fadeel, B. (2005). Epstein-Barr virus-encoded latent membrane protein 1 promotes stress-induced apoptosis upstream of caspase-2-dependent mitochondrial perturbation. Int J Cancer 113, 397-405.
    Zhivotovsky, B., and Orrenius, S. (2005). Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331, 859-867.
    Zhu, A. X. (2003). Hepatocellular carcinoma: are we making progress? Cancer Invest 21, 418-428.
    Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413.

    下載圖示 校內:2011-08-28公開
    校外:2011-08-28公開
    QR CODE