簡易檢索 / 詳目顯示

研究生: 陳則甫
Chen, Tse-Pu
論文名稱: 利用不同基板於氮化鎵蕭基光檢測器與金半金光檢測器之研究
The Study of GaN Schottky Barrier Photodetectors and MSM Photodetectors with Different Templates
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 111
中文關鍵詞: 光檢測器氮化鎵圖案化藍寶石基板雜訊奈米柱
外文關鍵詞: photodetectors, GaN, patterned sapphire substrate, noise, nanorod
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用有機化學氣相沉積系統在圖案化藍寶石基板上成長出三五族氮化物材料,或是利用有機化學氣相沉積系統在奈米柱結構上成長出三五族氮化物材料。然後,我們將在這些圖案化藍寶石基板和奈米柱結構上製作出金半金光檢測器和蕭基二極體,並對這些原件做特性上的分析。
    這篇論文主要由兩大部分組成的。在第一部分,我們主要是在討論在圖案化藍寶石基板上製作出的高品質氮化鎵的蕭基二極體,並且和一般傳統的藍寶石基板上製作出的氮化鎵的蕭基二極體的特性來做比較,我們發現利用圖案化藍寶石基板可以降低暗電流和增加響應度。在兩伏特的偏壓下,我們可以發現利用圖案化藍寶石基板的蕭基二極體的雜訊等效功率和檢測率分別為9.08×10-11 W and 1.74×1010 cmHz0.5W-1,比使用一般傳統的藍寶石基板所做出來的還要好。
    在第二部分,我們主要是在討論在奈米柱結構上製作出的高品質氮化鎵的金半金光檢測器,並且和一般傳統的藍寶石基板上製作出的氮化鎵的金半金光檢測器的特性來做比較,我們發現利用奈米柱結構來增進氮化鎵的品質並且可以降低暗電流,還可以減少光傳導增益、提升紫外光對可見光比。
    而在這部分,我們主要是在討論在奈米柱結構上製作出的高品質氮化鎵的蕭基二極體,並且和一般傳統的藍寶石基板上製作出的氮化鎵的蕭基二極體的特性來做比較,我們發現利用奈米柱結構可以降低暗電流,還可以減少光傳導增益、提升紫外光對可見光比。在兩伏特的偏壓下,我們可以發現利用圖案化藍寶石基板的蕭基二極體的雜訊等效功率和檢測率分別為7.00×10-10 W and 2.26×109 cmHz0.5W-1,而利用一般傳統的藍寶石基板的蕭基二極體的雜訊等效功率和檢測率分別為3.56×10-6 W and 4.44×105 cmHz0.5W-1。

    In this thesis, the nitride-based III-V alloys with patterned sapphire substrate or nanorod template had been grown and characterized by metalorganic chemical vapor deposition (MOCVD). Then, the Schottky barrier photodetectors and MSM photodetectors were fabricated.
    This thesis is made up of two parts. In the first part, we focused on a high quality GaN Schottky barrier photodetector was prepared on patterned sapphire substrates (PSS) by metalorganic chemical vapor deposition. Comparing with the PD prepared on conventional flat sapphire substrate, it was found that we can reduce dark current and enhance responsivity. Under -2 V applied bias, it was found that noise equivalent power (NEP) and normalized detectivity (D*) were 9.08×10-11 W and 1.74×1010 cmHz0.5W-1, respectively, for the PD prepared on PSS.
    In the second part, we reported the fabrication of GaN-based metal-semiconductor photodetectors (PDs) on conventional flat sapphire substrate and on nanorod template. Compared with the PD prepared on flat sapphire substrate, it was found that leakage current of the PD prepared on nanorod template was significantly smaller due to the improved crystal quality. It was also found that we can reduce the photoconductive gain and enhance ultraviolet-to-visible rejection ratio by using the nanorod template.
    In this part, we also reported the fabrication of GaN photodetectors (PDs) prepared on nanorod template. Using the nanorod template, it was found that we can effectively suppress leakage current, ultraviolet-to-visible rejection ratio and photoconductive gain of the PDs. With -2 V applied bias, it was found that noise equivalent power (NEP) and normalized detectivity (D*) were 7.00×10-10 W and 2.26×109 cmHz0.5W-1, respectively, for the PD prepared on nanorod template. With the same -2 V bias, it was found that NEP and D* were 3.56×10-6 W and 4.44×105 cmHz0.5W-1, respectively, for the PD prepared on conventional sapphire substrate.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement V Contents VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 Introduction and motivation 1 1-2 Organization of the thesis 4 Chapter 2 Fabrication Systems and Measurement Systems 8 2-1 Theory of metal-semiconductor contact 8 2-2 The carrier transport mechanisms of MSM structure 12 2-3 Parameters of PDs 14 2-4 The calculated methods of Schottky barrier height 17 2-4-1 Thermionic emission (TE) model 17 2-4-2 H(I) model 17 2-4-3 Norde model 18 2-4-4 Power exponent (α) model 19 2-5 X-Ray Diffraction (XRD) System 21 2-6 Photoluminescence (PL) Spectrum System [59] 22 2-7 Scanning Electron Microscope (SEM) 22 2-8 Atomic Force Microscope System 24 2-9 The responsivity measurement system and other measurement system 24 Chapter 3 The characteristics of Schottky contact 39 3-1 Background 39 3-2 Experiment 40 3-2-1 The fabrication of the bulk GaN with nanorod template 40 3-2-2 GaN MSM photodetectors 40 3-3 Dark current characteristics of different metal contact thickness 42 Chapter 4 GaN Schottky Barrier Photodetectors Prepared on Patterned Sapphire Substrate 44 4-1 Background 44 4-2 Experiment 46 4-2-1 The fabrication of the bulk GaN with patterned sapphire substrates 46 4-2-2 GaN Schottky barrier photodetectors 47 4-3 The material analyses of fabricated GaN film 49 4-3-1 PL measurements 49 4-3-2 X-ray rocking curves (XRC) measurements 50 4-3-3 SEM measurement 50 4-4 Characteristics of GaN-based Schottky barrier photodetectors prepared on patterned sapphire substrate 51 Chapter 5 GaN Metal-Semiconductor-Metal Photodetectors and Schottky Barrier Photodetectors Prepared on Nanorod Template 68 5-1 Background 68 5-2 Experiment 69 5-2-1 The fabrication of the bulk GaN with nanorod template 69 5-2-2 GaN MSM photodetectors 70 5-2-3 GaN Schottky barrier photodetectors 72 5-3 The material analyses of fabricated GaN film 74 5-3-1 X-ray rocking curves (XRC) measurements 74 5-3-2 SEM measurement 75 5-4 Characteristics of GaN-based MSM photodetectors prepared on nanorod template 76 5-4 Characteristics of GaN-based Schottky barrier photodetectors prepared nanorod template 78 Chapter 6 Conclusions and Future Works 99 6-1 Conclusions 99 6-2 Future works 100 Reference 101

    [1]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J Appl Phys, 76, 1363, 1994
    [2]M. A. Khan, M. S. Shur, J. N. Kuznia, Q. Chen, J. Burm and W. Schaff, Appl Phys Lett, 66, 1083, 1995
    [3]O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev and H. Morkoc, Appl Phys Lett, 69, 3872, 1996
    [4]Y. Irokawa, J. Kim, F. Ren, K. H. Baik, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen and J. I. Chyi, Appl Phys Lett, 83, 4987, 2003
    [5]J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J. Chang, Y. K. Su and C. T. Lee, Appl Phys Lett, 81, 4263, 2002
    [6]J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, Ieee Photonics Technology Letters, 14, 450, 2002
    [7]J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton and R. A. Stall, Appl Phys Lett, 68, 2273, 1996
    [8]J. K. Sheu and G. C. Chi, J Phys-Condens Mat, 14, R657, 2002
    [9]F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca and S. J. Pearton, Mrs Internet J N S R, 3, 1998
    [10]M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, Appl Phys Lett, 62, 1786, 1993
    [11]M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. Schaff and L. F. Eastman, Electron Lett, 32, 357, 1996
    [12]M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm and M. S. Shur, Appl Phys Lett, 65, 1121, 1994
    [13]S. Strite, M. E. Lin and H. Morkoc, Thin Solid Films, 231, 197, 1993
    [14]H. P. Maruska and J. J. Tietjen, Appl Phys Lett, 15, 327, 1969
    [15]P. B. Perry and R. F. Rutz, Appl Phys Lett, 33, 319, 1978
    [16]S. Itoh, N. Nakayama, S. Matsumoto, M. Nagai, K. Nakano, M. Ozawa, H. Okuyama, S. Tomiya, T. Ohata, M. Ikeda, A. Ishibashi and Y. Mori, Jpn J Appl Phys 2, 33, L938, 1994
    [17]E. D. Jungbluth, Laser Focus World, 29, 33, 1993
    [18]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn J Appl Phys 2, 35, L74, 1996
    [19]A. Bykhovski, B. Gelmont and M. Shur, J Appl Phys, 74, 6734, 1993
    [20]P. Kozodoy, M. Hansen, S. P. DenBaars and U. K. Mishra, Appl Phys Lett, 74, 3681, 1999
    [21]G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra and E. J. Tarsa, Appl Phys Lett, 75, 247, 1999
    [22]Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, Appl Phys Lett, 70, 2277, 1997
    [23]C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, Ieee Photonics Technology Letters, 13, 848, 2001
    [24]E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes and P. Gibart, J Phys-Condens Mat, 13, 7115, 2001
    [25]T. Kawabata, T. Matsuda and S. Koike, J Appl Phys, 56, 2367, 1984
    [26]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, Appl Phys Lett, 72, 211, 1998
    [27]S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang and J. F. Chen, J Electrochem Soc, 150, C77, 2003
    [28]F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, Appl Phys Lett, 73, 3893, 1998
    [29]C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi and T. Enoki, Jpn J Appl Phys 1, 44, 7889, 2005
    [30]L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, Appl Phys Lett, 77, 3788, 2000
    [31]D. S. Wuu, R. H. Horng, W. H. Tseng, W. T. Lin and C. Y. Kung, J Cryst Growth, 220, 235, 2000
    [32]K. Uchida, K. Nishida, M. Kondo and H. Munekata, J Cryst Growth, 190, 270, 1998
    [33]T. Kachi, T. Tomita, K. Itoh and H. Tadano, Appl Phys Lett, 72, 704, 1998
    [34]T. Wang, Y. Morishima, N. Naoi and S. Sakai, J Cryst Growth, 213, 188, 2000
    [35]D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1998.
    [36]S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981
    [37]E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, Oxford University Press, 1988, ch. 1.
    [38]W. Schottky, Naturewissenschaften, 26, 843, 1938
    [39]S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 225, 1981.
    [40]F. A. Padovani and R. Stratton, Solid State Electron, 9, 695, 1966
    [41]C. R. Crowell and V. L. Rideout, Solid State Electron, 12, 89, 1969
    [42]V. L. Rideout, Solid State Electron, 18, 541, 1975
    [43]M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos and H. Luth, Solid State Electron, 41, 25, 1997
    [44]P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, 1997.
    [45]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, J Appl Phys, 83, 6148, 1998
    [46]H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, Jpn J Appl Phys 2, 40, L505, 2001
    [47]O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl Phys Lett, 79, 1417, 2001
    [48]K. Leung, A. F. Wright and E. B. Stechel, Appl Phys Lett, 74, 2495, 1999
    [49]E. H. Rhoderick, Iee Proc-I, 129, 1, 1982
    [50]S. K. Cheung and N. W. Cheung, Appl Phys Lett, 49, 85, 1986
    [51]H. Norde, J Appl Phys, 50, 5052, 1979
    [52]K. E. Bohlin, J Appl Phys, 60, 1223, 1986
    [53]J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, Appl Phys Lett, 72, 3317, 1998
    [54]S. M. Sze, Physics of Semiconductor Devices, Wiley, 1981.
    [55]V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D. Ritter, M. Orenstein and A. Peer, J Appl Phys, 85, 6873, 1999
    [56]B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, Appl Phys Lett, 68, 643, 1996
    [57]M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim and A. Yoshikawa, Appl Phys Lett, 77, 2557, 2000
    [58]Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, Appl Phys Lett, 86, 2005
    [59]Dissertation of NCKU: Chia-Lin Yu, “ Fibrication and Characterization of GaN-based Photodetectors and Heterostructure Field Effect Transistors with Low Leakage Current”, 2007 chap. 2.6.6
    [60]T. Mukai, M. Yamada and S. Nakamura, Jpn J Appl Phys 2, 37, L1358, 1998
    [61]S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, Ieee J Sel Top Quant, 8, 278, 2002
    [62]S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, Ieee Jel Top Quant, 8, 744, 2002
    [63]W. H. Lan, Ieee T Electron Dev, 52, 1217, 2005
    [64]N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, Ieee Photonics Technology Letters, 16, 1718, 2004
    [65]O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl Phys Lett, 80, 347, 2002
    [66]S. C. Ling, C. L. Chao, J. R. Chen, P. C. Liu, T. S. Ko, T. C. Lu, H. C. Kuo, S. C. Wang, S. J. Cheng and J. D. Tsay, Appl Phys Lett, 94, 2009
    [67]S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo and S. L. Wu, Ieee J Quantum Elect, 44, 916, 2008
    [68]C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis and J. C. Campbell, Appl Phys Lett, 80, 3754, 2002
    [69]T. K. Ko, S. C. Shei, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, C. S. Chang, W. S. Chen, C. K. Wang, J. K. Sheu and W. C. Lai, Ieee Sens J, 6, 964, 2006
    [70]E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez and M. Razeghi, Appl Phys Lett, 74, 1171, 1999
    [71]K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang and C. H. Kuo, Appl Phys Lett, 93, 2008
    [72]S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo and S. L. Wu, Ieee Sens J, 9, 87, 2009
    [73]S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. A. Tsai, Ieee Electron Device Letters, 24, 212, 2003
    [74]S. J. Chang, Y. D. Jhou, Y. C. Lin, S. L. Wu, C. H. Chen, T. C. Wen and L. W. Wu, Ieee Photonics Technology Letters, 20, 1866, 2008
    [75]S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A. L. Holmes and J. C. Campbell, Ieee J Quantum Elect, 36, 1262, 2000
    [76]J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer and R. J. Molnar, Appl Phys Lett, 78, 1685, 2001
    [77]J. K. Sheu, M. L. Lee and W. C. Lai, Appl Phys Lett, 86, 2005
    [78]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, Phys Status Solidi A, 188, 121, 2001
    [79]S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, Solid State Electron, 47, 1539, 2003
    [80]W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu and A. K. Lin, Ieee J Quantum Elect, 41, 1403, 2005
    [81]J. Neugebauer and C. G. VandeWalle, Appl Phys Lett, 69, 503, 1996
    [82]A. Hierro, D. Kwon, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra and S. P. DenBaars, Appl Phys Lett, 76, 3064, 2000
    [83]E. Monroy, F. Calle, J. L. Pau, E. Munoz and F. Omnes, Electron Lett, 36, 2096, 2000
    [84]D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, J Appl Phys, 83, 2142, 1998
    [85]S. R. Morrison, J Appl Phys, 72, 4104, 1992
    [86]J. L. Li, W. R. Donaldson and T. Y. Hsiang, Ieee Photonics Technology Letters, 15, 1141, 2003
    [87]M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai and G. C. Chi, Ieee Electron Device Letters, 25, 593, 2004
    [88]P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, C. H. Liu and S. L. Wu, Ieee Sens J, 7, 1270, 2007
    [89]C. K. Wang, T. K. Ko, C. S. Chang, S. J. Chang, Y. K. Su, T. C. Wen, C. H. Kuo and Y. Z. Chiou, Ieee P hotonics Technology Letters, 17, 2161, 2005
    [90]J. B. D. Soole and H. Schumacher, Ieee J Quantum Elect, 27, 737, 1991
    [91]T. Mukai, K. Takekawa and S. Nakamura, Jpn J Appl Phys 2, 37, L839, 1998
    [92]K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor and R. Davis, Appl Phys Lett, 75, 196, 1999
    [93]K. Hiramatsu, J Phys-Condens Mat, 13, 6961, 2001
    [94]D. Coquillat, M. L. V. d'Yerville, M. Kazan, C. Liu, I. M. Watson, P. R. Edwards, R. W. Martin, H. M. H. Chong and R. M. De la Rue, J Appl Phys, 103, 2008
    [95]C. T. Lee, H. W. Chen and H. Y. Lee, Appl Phys Lett, 82, 4304, 2003
    [96]S. Karmalkar, D. M. Sathaiya and M. S. Shur, Appl Phys Lett, 82, 3976, 2003
    [97]J. A. Garrido, E. Monroy, I. Izpura and E. Munoz, Semicond Sci Tech, 13, 563, 1998
    [98]T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis and J. C. Campbell, Electron Lett, 36, 1581, 2000
    [99]D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, in Proc. Int. Electron Devices Meeting, Tech. Digest, pp. 759–762, 1997.
    [100]S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 747, John Wiley & Sons, New York, 1981.

    無法下載圖示 校內:2013-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE