簡易檢索 / 詳目顯示

研究生: 鄧淳仁
Chun-Jen Teng
論文名稱: 電磁誘發透明的量子保真度多模態理論
A multimodal theory of quantum fidelity for electromagnetically induced transparency
指導教授: 陳泳帆
Yong-Fan Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 47
中文關鍵詞: 量子保真度電磁波引發透明多模態分析
外文關鍵詞: quantum fidelity, electromagnetically induced transparency
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究了有限長度脈衝光打入 EIT 介質後的損耗程度。根據不同模態的光
    互相獨立的性質,利用傅立葉轉換將打入的探測光脈衝轉換至頻域得到各個模態的
    分布函數,我們建立了一個多模態的模型並計算出一個平均的量子保真度來量化
    EIT 介質保護探測光脈衝的能力。利用這個理論模型我們也比較了佛克態與同調態
    在不同光學深度下改變探測光的脈衝長度對穿透率與保真度的影響,並解釋這兩種
    量子態各自的量子特性造成了在量子保真度上的差異,包括佛克態的隨機相位以及
    同調態中真空態成分的貢獻。

    We construct a model to analyze the fidelities for the multimode light fields passing through an electromagnetically-induced-transparency system. Using the Maxwell-Schrödinger and Heisenberg-Langevin equations, we analyze the evolution of the quantum state of the field, and obtain the output density matrix which allows us to calculated the fidelity. The results show that for the Fock-state field, the fidelity depends mainly on transmission. On the contrary, if the input field is coherent state, the fidelity depends on transmission and phase.

    摘要 i 英文延伸摘要 ii 誌謝 xi Table of Contents xii 第 1 章. 緒論 1 第 2 章. EIT 模型 2 2.1 簡介 2 2.2 Λ-type EIT 半古典解 2 2.3 量子解 8 2.4 EIT 透明窗口、穿透率與延遲時間 11 第 3 章. 多模態基底 14 3.1 引言 14 3.2 佛克態 (Fock state) 14 3.3 同調態 (coherent state) 18 第 4 章. 多模態量子保真度 20 4.1 簡介 20 4.2 定義 20 4.3 佛克態保真度 23 4.4 同調態保真度 26 第 5 章. 結論與未來展望 30 References 31 Appendix A. Maxwell–Schrödinger equation 33 Appendix B. optical Bloch equation 與鬆弛項 37 Appendix C. Heisenberg-Langevin equation 40 Appendix D. 平面波量子化 44 Appendix E. 愛因斯坦關係式與擴散係數 46

    [1] K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nature Photonics, vol. 4, pp. 218–221, mar 2010.
    [2] M. Sabooni, Q. Li, S. Kröll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett., vol. 110, p. 133604, Mar 2013.
    [3] N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A, vol. 75, p. 032327, Mar 2007.
    [4] M. Hosseini, B. Sparkes, G. Campbell, P. Lam, and B. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nature Communications, vol. 2, feb 2011.
    [5] S. E. Harris, “Electromagnetically induced transparency,” Physics Today, vol. 50, no. 7, pp. 36–42, 1997.
    [6] M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys., vol. 75, pp. 457–472, Apr 2003.
    [7] Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Highly efficient coherent optical memory based on electromagnetically induced transparency,” Phys. Rev. Lett., vol. 120, p. 183602, May 2018.
    [8] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, “Efficient quantum memory for single-photon polarization qubits,” Nature Photonics, vol. 13, pp. 346–351, mar 2019.
    [9] P. Vernaz-Gris, K. Huang, M. Cao, A. S. Sheremet, and J. Laurat, “Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble,” Nature Communications, vol. 9, jan 2018.
    [10] H. Hsu, C.-Y. Cheng, J.-S. Shiu, L.-C. Chen, and Y.-F. Chen, “Quantum fidelity of electromagnetically induced transparency: the full quantum theory,” Opt. Express, vol. 30, pp. 2097–2111, Jan 2022.
    [11] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
    [12] F. Kheirandish, “Open quantum systems in heisenberg picture,” 2019.
    [13] G. Cariolaro and G. Pierobon, “Fock expansion of multimode pure gaussian states,” Journal of Mathematical Physics, vol. 56, no. 12, p. 122109, 2015.
    [14] N. Lauk, C. O’Brien, and M. Fleischhauer, “Fidelity of photon propagation in electromagnetically induced transparency in the presence of four-wave mixing,” Physical Review A, vol. 88, no. 1, p. 013823, 2013.
    [15] M. O. Scully, Quantum optics. Cambridge University Press, 1997.
    [16] M.FleischhauerandM.D.Lukin, “Dark-statepolaritonsinelectromagneticallyinduced transparency,” Physical Review Letters, vol. 84, pp. 5094–5097, may 2000.
    [17] J. J. Sakurai, Modern quantum mechanics. Addison-Wesley Pub. Co., 1994.
    [18] C. Gerry and P. Knight, Introductory Quantum Optics. Cambridge University Press, 2004.
    [19] Y.-L. Chuang, R.-K. Lee, and A. Y. Ite, “Generation of quantum entanglement based on electromagnetically induced transparency media,” Optics Express, vol. 29, no. 3, pp. 3928–3942, 2021.

    下載圖示 校內:2025-09-26公開
    校外:2025-09-26公開
    QR CODE