| 研究生: |
黃奕 Huang, Yi |
|---|---|
| 論文名稱: |
兩階段熱處理對10B21低碳鋼鑽尾自攻螺絲微觀組織與機械性質之影響 Effects of Two-Step Heat Treatment on Microstructure and Mechanical Properties of 10B21 Low Carbon Steel Self Drilling Tapping Screws |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 洪飛義 Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | AISI 10B21 、鑽尾自攻螺絲 、熱處理 、氫脆 、扭斷強度 |
| 外文關鍵詞: | AISI 10B21, self drilling tapping screw, heat treament, hydrogen embrittlement, torque strength |
| 相關次數: | 點閱:200 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用10B21低碳鋼鑽尾自攻螺絲進行兩階段熱處理,探討其熱處理後顯微組織及機械性質特性,以及將熱處理後鍍鋅螺絲成品進行氫脆試驗,以釐清相關材料特性。
第一階段熱處理選擇滲碳濃度為0.3%,進行淬火中斷熱處理。經滲碳處理後10B21材表層均生成更密集之麻田散體組織,原先淬火後之脫碳現象也有所改善。淬火中斷熱處理可使10B21低碳鋼基地生成麻田散體、肥粒體以及碳化物之混合結構,經實驗計算後破壞韌性較傳統淬火回火熱處理條件更高,處理時間也更為迅速。
第二階段熱處理利用錫湯重新加熱鑽尾至950°C而再次沃斯田體化後淬火,試片於表層可發現大量灰黑色麻田散體(α')與白色肥粒體(α)混合組織,表層平均硬度為HV576且具有良好貫穿鋼板能力。經以上兩階段熱處理,可得同時具有高表面硬度鑽尾與高韌性桿部10B21鑽尾自攻螺絲。
對進行兩階段熱處理後10B21鑽尾自攻螺絲進行氫脆試驗,實驗發現無發生扭斷強度大幅下降或扭斷前直接斷裂等疑似氫脆破壞之現象,巨觀破斷面出現在正常應力集中處之螺牙部,且斷面是平整的,微觀特徵呈現許多孔洞,符合延性破壞之微結構特徵,可認定經兩階段熱處理10B21鑽尾自攻螺絲因桿部具有較高韌性,故抗氫脆能力佳,亦具有實際應用潛力
In this study, a 10B21 low carbon self drilling tapping screw with high hardness drill and high toughness shank preventing hydrogen embrittlement without baking can be obtained by two-step treatment. Quenching at 220°C in 1 minute and partitioning at 400°C in 10 minutes on 10B21 low carbon self drilling tapping screw shows high toughness and avoiding HE without baking. Carburizing in potential of 0.3% shows better mechanical properties and enhances the surface hardness of 10B21 low carbon self drilling tapping screw significantly. Quenching at 950°C in 3 minutes by Tin bath shows the highest hardness and quenching beyond 1000°C would decrease the hardness of 10B21 low carbon self drilling tapping screw by grain coarsening.
[1] William D. Callister, Jr., “ Fundamentals of Materials Science and Engineering ”, Chapter11-7, pp. 339-343, 2001.
[2] 余煥騰,金屬熱處理學,六合出版社,167-192頁,1998年。
[3] K. W. Andrews, Empirical Formula for the Calculation of Some Transformation Temperatures, Journal of the Iron and Steel Institute,721-727, 1965.
[4] 林鴻榮、鄭國華,中碳鋼加硼效應研究,經濟部七十年度研究發展專題,1981年。
[5] Mulford, R. A., McMahon, C. J., Pope, D. P., & Feng, H. C. ,Temper embrittlement of Ni-Cr steels by phosphorus. Metallurgical and Materials Transactions A, 7(8), 1183-1195, 1976.
[6] 王翔宇、游振平、鄭達謙、陳宗榮、黃慶淵、林新智,回火處理對10B30和15B30V氫脆行為之影響,台灣大學材料科學與工程學系與中國鋼鐵公司。
[7] Sun, Y., Chen, J., Liu, J. Effect of hydrogen on ductility of high strength quenched and tempered (QT) Cr–Ni–Mo steels. Materials Science and Engineering: A, 625, 89-97, 2015.
[8] Chen, F. S., Wang, K. L. Super-carburization of low alloy steel and low carbon steel by fluidized-bed furnaces. Surface and Coatings Technology, 132(1), 36-44, 2000.
[9] Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K., & Speer, J. G. Quenching and partitioning martensite,A novel steel heat treatment. Materials Science and Engineering: A, 438, 25-34, 2006.
[10] Hsu, T. Y. "Quenching-Partitioning-Tempering (Precipitation)(QPT) Process for Ultra-high Strength Steel ." Heat Treatment 2 : 002,2008.
[11] Matlock, David K., and John G. Speer. "Processing opportunities for
new advanced high-strength sheet steels." Materials and Manufacturing Processes 25.1-3 : 7-13, 2010.
[12] Speer, J. G., Assunção, F. C. R., Matlock, D. K., & Edmonds, D. V. The" quenching and partitioning" process: Background and recent progress. Materials Research, 8(4), 417-423, 2005.
[13] J. Woodtli and R. KieselBach, Damage due to Hydrogen EmBrittlement and Stress Corrosion Cracking, Engineering Failure Analysis 7, pp. 427-450, 2000.
[14] Lonyuk, B., Hanlon, D. N., van der Zwaag, S., Zuidema, J., Bakker, A. A study of hydrogen embrittlement in automotive fastener steels. In ICF10, Honolulu (USA), 2001.
[15] J. K. Knott, Some New Aspects of Hydrogen-Assisted Crack Growth in Steels, Journal of Chinese Corrosion Engineering, vol. 9, No. 4, 215- 224, 1995.
[16] Liu, L., Zheng, Y. P., Zhang, T. Y., Chu, W. Y., Hsiao, C. M. , Hydrogen diffusion and permeation in metals. Journal of Chinese Corrosion Engineering, vol. 9, 245-259, 1995.
[17] Rebak, R. B., Muchjin, L., Szklarska-Smialowska, Z, Hydrogen diffusion and accumulation in automotive fasteners. Corrosion, 53(6), 481-488, 1997.
[18] Hosseini, S. M., Najafizadeh, A., Kermanpur, Producing the nano/ultrafine grained low carbon steel by martensite process using plane strain compression. Journal of Materials Processing Technology, 211, 230-236, 2011.
[19] 黃志濤、田文懷、蘇永安,普通碳素鋼滲氮後的氫脆敏感性理化檢驗-物理分冊 46.7 : 423-426,2010。
[20] Tabata, T., and H. K. Birnbaum.Direct observations of hydrogen enhanced crack propagation in iron." Scripta Metallurgica 18.3, 1984.
[21] 曾建豪,電鍍鋅 10B21 低碳鋼螺絲之氫脆破壞特性探討,成功大學材料科學及工程學系學位論文,2015。
校內:2022-07-20公開