簡易檢索 / 詳目顯示

研究生: 陳彥均
Chen, Yen-Jiun
論文名稱: 利用複數軌跡進行量子混沌控制
Quantum Chaos Control by Complex Trajectories
指導教授: 楊憲東
Yong, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 量子力學複數力學量子混沌滑動模式控制混沌同步化
外文關鍵詞: Quantum mechanics, Complex mechanics, quantum chaos, Sliding mode control, chaos synchronization
相關次數: 點閱:207下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有關在量子混沌分析和控制上的研究日趨重要,但缺乏像古典混沌中軌跡發散的概念來分析量子混沌。本論文提出以複數軌跡方法,連結牛頓力學和量子力學之間的橋梁,來進行量子混沌控制。本文針對二維帶電非等向簡諧振子的物理系統,將狀態變數複數化後,從複數空間的軌跡建立量子混沌行為。藉由量子動態方程式的建立,吾人證實古典的控制理論也能應用至量子系統。本論文使用滑動模式控制(Sliding mode control),讓系統對量子初值擾動具有強健功能,以達到混沌同步化(chaos synchronization)的目的。本論文藉由數值模擬的結果,證實所設計的控制器在初始條件的擾動下,可達到混沌行為的強健控制目的。吾人同時利用傳統混沌分析方法,在滑動模式控制的作用下,觀察從混沌到週期性之間的變化。

    In recent years, analysis and control of quantum chaos is increasingly important, but the lack of the concept of trajectory makes it impossible to analyze quantum chaos by the methods used in classical chaos. The aim of this thesis is to connect the Newton’s world to the quantum world by the complex mechanics so that quantum chaos can be analyzed and controlled by the complex-extended Newtonian mechanics. Through the bridge of complex mechanics, in this thesis we model quantum motions for 2D charged anisotropic harmonic oscillator by complex-valued dynamic equations based on which quantum chaos can be analyzed by using well-known methods used in classical chaos. With the established quantum dynamic model, we then apply the sliding-mode control method to control the chaotic quantum behavior of the considered quantum system. The simulation results show that chaotic motions can be changed into periodic motions by the proposed chaos control and meanwhile, chaos synchronization can be achieved in the presence of variations of initial conditions. Several signatures of chaos are introduced here to justify the chaos to periodicity process under the sliding-mode control law.

    摘要............ .....i Abstract.............ii 誌謝.................iii 目錄.................iv 表目錄...............vi 圖目錄...............vii 符號表................x 第一章 緒論.............................1 1.1 前言...........................1 1.2 研究背景與文獻回顧...............3 1.3 各章概述........................6 第二章 從古典混沌到量子混沌................8 2.1 古典力學中的混沌.................8 2.2 奇異吸子........................10 2.3 古典混沌的分析法.................13 2.3.1 頻譜分析....................13 2.3.2 李氏指數....................14 2.4 過渡到量子混沌...................20 第三章 量子混沌現象與複數力學..............21 3.1 量子力學軌跡詮釋法 ― 複數力學......21 3.2 簡諧振子的量子化及波函數..........24 3.3 簡諧振子的量子混沌現象............29 3.4 量子系統中的強混沌現象............31 3.5 量子位勢造成的量子混沌現象.........33 第四章 強健滑動模式控制....................37 4.1 非線性控制 ― 滑動模式控制理論......37 4.2 利用Lyapunov定理設計控制律........39 第五章 量子混沌控制器設計與模擬分析..........44 5.1 針對量子系統之控制器設計...........44 5.2 初始位置變動下的量子混沌控制........47 5.2.1 將多個不同混沌軌跡控制至相同的穩定軌跡.....47 5.2.2 將混沌軌跡控制到不同的類週期性軌跡........51 5.3 強混沌中的量子控制.................54 5.4 控制器參數調整的影響...............56 5.5 驗證及討論........................62 第六章 結論...............................70 6.1 結果與討論........................70 6.2 未來展望..........................71 參考文獻...................................73 自述......................................76

    [1] Yang, C.D., 2006, “Quantum Hamilton mechanics: Hamilton equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom”, Annals of Physics. Vol. 321,pp. 2876-2926.
    [2] Yang, C.D., 2006, “Modeling Quantum Harmonic Oscillator in Complex Domain”, Chaos, Solitons and Fractals, Vol. 30, pp.342-362.
    [3] Yang, C.D., 2007, “ Quantum Motion in Complex Space”, Chaos, Solitons and Fractals, Vol. 33, pp.1073-1092.
    [4] Yang, C.D., 2008, “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics”, Physics Letters A, Vol. 372, pp.6240-6253.
    [5] Yang, C.D., 2010, “ Complex Mechanics”, Asian Academic Publisher, ISSN 2077-8139, Hong Kong.
    [6] G. M. Huang, T. J. Tarn, 1983, “On the controllability of quantum mechanical systems” Journal of Mathematics and Physics, 24:2603-2618.
    [7] R.S. Judson, 1992, “Teaching lasers to control molecules”,Phys. Rev. Lett. 68,1500.
    [8] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kielfer, V. Seyfried, M. Strehle, and G. Gerber, 1998, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses” ,Science 282,919.
    [9] J. Kunde, B. Baumann, S. Arlt, 2001, June, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy” , Optical Society of America, Vol.18, No.6,
    [10] A.C. Doherty, K. Jacobs, 1999,“Feedback-control of quantum systems using continuous state-estimation” , Phys. Rev. A,60, 2700.
    [11] M. Yanagisawa, H. Kimura, 2003,Dec, “Transfer function approach to quantum control part I: Dynamics of Quantum Feedback System” , IEEE Transactions on Automatic Control, vol. 48.
    [12] M. Yanagisawa, H. Kimura, 2003, Dec,“Transfer function approach to quantum control part II: Control Concepts and Applications” , IEEE Transactions on Automatic Control, vol. 48.
    [13] 黃仕銘, 2005, “分子運動的強健控制,” 國立成功大學航空太空工 程研究所 碩士論文
    [14] L.M. Pecora, T.M. Carroll, 1990, “Synchronization in chaotic systems ” Phys. Rev. Lett. 64:821-824 .
    [15] M.T. Yassen, 2005,“Controlling chaos and synchronization for new chaotic system using linear feedback control.”Chaos , Solitons & Fractals 26:913-920.
    [16] S. Chen, J. L , 2002,“Synchronization of an uncertain unified system via adaptive control.”Chaos, Solitons & Fractals 14:643-647.
    [17] H.N. Agiza, M.T. Yassen, 2001,“Synchronization of Rossler and Chen chaotic dynamical systems using active control .”Phys. Lett. A 278 191-197.
    [18] Heng-Hui Chen, Jiunn-Shean Chiang, Yung Lung Lin, Ching-I Lee, 2007,“Chaos synchronization of general Lorenz, Lu, and Chen systems” , Hsiuping journal. Vol. 15, pp.159-166.
    [19] B. Davies, 1999,“Exploring Chaos:Theory and Experiment.” Westview Press
    [20] F. Takens, 1981, Math, “Detecting strange attractors in turbulence,” Lecture notes, pp. 361-381.
    [21] J.P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, S. Ciliberto, 1986, “Liapunov exponents from time series”,Vol.34, No.6, Physical Review
    [22] H. Goldstein, 1980, “Classical Mechanics”, Chapter 10, 2nd Ed., Addison- Wesley Publishing Company.
    [23] O. Dippel, P. Schmelcher, and L.S. Cederbaum, 1994, “Charged Anisotropic Harmonic Oscillator and The Hydrogen Atom in Crossed Fields”, Physics Review A, Vol.49, pp.4415-4429.
    [24] 魏嘉宏, 2009, “由複數量子軌跡觀點討論量子混沌與量子機率論,” 國立成功大學航空太空工程學系 博士論文
    [25] G. Arfken, 1985 “Hypergeometric Functions”, §13.5 in Mathematical Methods for Physicists, 3rd Ed. Academic Press, pp.748-752.
    [26] C. Edwards, S. Spurgeon, 1998 “Sliding mode Control:Theory and Applications”, London: Taylor and Francis.
    [27] C. H. Yang, Z. M. Ge, C. M. Chang, S. Y. Li, 2009, “Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control” , Nolinear Analysis: Real World Applications.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE