| 研究生: |
陳彥均 Chen, Yen-Jiun |
|---|---|
| 論文名稱: |
利用複數軌跡進行量子混沌控制 Quantum Chaos Control by Complex Trajectories |
| 指導教授: |
楊憲東
Yong, Ciann-Dong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 量子力學 、複數力學 、量子混沌 、滑動模式控制 、混沌同步化 |
| 外文關鍵詞: | Quantum mechanics, Complex mechanics, quantum chaos, Sliding mode control, chaos synchronization |
| 相關次數: | 點閱:207 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有關在量子混沌分析和控制上的研究日趨重要,但缺乏像古典混沌中軌跡發散的概念來分析量子混沌。本論文提出以複數軌跡方法,連結牛頓力學和量子力學之間的橋梁,來進行量子混沌控制。本文針對二維帶電非等向簡諧振子的物理系統,將狀態變數複數化後,從複數空間的軌跡建立量子混沌行為。藉由量子動態方程式的建立,吾人證實古典的控制理論也能應用至量子系統。本論文使用滑動模式控制(Sliding mode control),讓系統對量子初值擾動具有強健功能,以達到混沌同步化(chaos synchronization)的目的。本論文藉由數值模擬的結果,證實所設計的控制器在初始條件的擾動下,可達到混沌行為的強健控制目的。吾人同時利用傳統混沌分析方法,在滑動模式控制的作用下,觀察從混沌到週期性之間的變化。
In recent years, analysis and control of quantum chaos is increasingly important, but the lack of the concept of trajectory makes it impossible to analyze quantum chaos by the methods used in classical chaos. The aim of this thesis is to connect the Newton’s world to the quantum world by the complex mechanics so that quantum chaos can be analyzed and controlled by the complex-extended Newtonian mechanics. Through the bridge of complex mechanics, in this thesis we model quantum motions for 2D charged anisotropic harmonic oscillator by complex-valued dynamic equations based on which quantum chaos can be analyzed by using well-known methods used in classical chaos. With the established quantum dynamic model, we then apply the sliding-mode control method to control the chaotic quantum behavior of the considered quantum system. The simulation results show that chaotic motions can be changed into periodic motions by the proposed chaos control and meanwhile, chaos synchronization can be achieved in the presence of variations of initial conditions. Several signatures of chaos are introduced here to justify the chaos to periodicity process under the sliding-mode control law.
[1] Yang, C.D., 2006, “Quantum Hamilton mechanics: Hamilton equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom”, Annals of Physics. Vol. 321,pp. 2876-2926.
[2] Yang, C.D., 2006, “Modeling Quantum Harmonic Oscillator in Complex Domain”, Chaos, Solitons and Fractals, Vol. 30, pp.342-362.
[3] Yang, C.D., 2007, “ Quantum Motion in Complex Space”, Chaos, Solitons and Fractals, Vol. 33, pp.1073-1092.
[4] Yang, C.D., 2008, “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics”, Physics Letters A, Vol. 372, pp.6240-6253.
[5] Yang, C.D., 2010, “ Complex Mechanics”, Asian Academic Publisher, ISSN 2077-8139, Hong Kong.
[6] G. M. Huang, T. J. Tarn, 1983, “On the controllability of quantum mechanical systems” Journal of Mathematics and Physics, 24:2603-2618.
[7] R.S. Judson, 1992, “Teaching lasers to control molecules”,Phys. Rev. Lett. 68,1500.
[8] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kielfer, V. Seyfried, M. Strehle, and G. Gerber, 1998, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses” ,Science 282,919.
[9] J. Kunde, B. Baumann, S. Arlt, 2001, June, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy” , Optical Society of America, Vol.18, No.6,
[10] A.C. Doherty, K. Jacobs, 1999,“Feedback-control of quantum systems using continuous state-estimation” , Phys. Rev. A,60, 2700.
[11] M. Yanagisawa, H. Kimura, 2003,Dec, “Transfer function approach to quantum control part I: Dynamics of Quantum Feedback System” , IEEE Transactions on Automatic Control, vol. 48.
[12] M. Yanagisawa, H. Kimura, 2003, Dec,“Transfer function approach to quantum control part II: Control Concepts and Applications” , IEEE Transactions on Automatic Control, vol. 48.
[13] 黃仕銘, 2005, “分子運動的強健控制,” 國立成功大學航空太空工 程研究所 碩士論文
[14] L.M. Pecora, T.M. Carroll, 1990, “Synchronization in chaotic systems ” Phys. Rev. Lett. 64:821-824 .
[15] M.T. Yassen, 2005,“Controlling chaos and synchronization for new chaotic system using linear feedback control.”Chaos , Solitons & Fractals 26:913-920.
[16] S. Chen, J. L , 2002,“Synchronization of an uncertain unified system via adaptive control.”Chaos, Solitons & Fractals 14:643-647.
[17] H.N. Agiza, M.T. Yassen, 2001,“Synchronization of Rossler and Chen chaotic dynamical systems using active control .”Phys. Lett. A 278 191-197.
[18] Heng-Hui Chen, Jiunn-Shean Chiang, Yung Lung Lin, Ching-I Lee, 2007,“Chaos synchronization of general Lorenz, Lu, and Chen systems” , Hsiuping journal. Vol. 15, pp.159-166.
[19] B. Davies, 1999,“Exploring Chaos:Theory and Experiment.” Westview Press
[20] F. Takens, 1981, Math, “Detecting strange attractors in turbulence,” Lecture notes, pp. 361-381.
[21] J.P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, S. Ciliberto, 1986, “Liapunov exponents from time series”,Vol.34, No.6, Physical Review
[22] H. Goldstein, 1980, “Classical Mechanics”, Chapter 10, 2nd Ed., Addison- Wesley Publishing Company.
[23] O. Dippel, P. Schmelcher, and L.S. Cederbaum, 1994, “Charged Anisotropic Harmonic Oscillator and The Hydrogen Atom in Crossed Fields”, Physics Review A, Vol.49, pp.4415-4429.
[24] 魏嘉宏, 2009, “由複數量子軌跡觀點討論量子混沌與量子機率論,” 國立成功大學航空太空工程學系 博士論文
[25] G. Arfken, 1985 “Hypergeometric Functions”, §13.5 in Mathematical Methods for Physicists, 3rd Ed. Academic Press, pp.748-752.
[26] C. Edwards, S. Spurgeon, 1998 “Sliding mode Control:Theory and Applications”, London: Taylor and Francis.
[27] C. H. Yang, Z. M. Ge, C. M. Chang, S. Y. Li, 2009, “Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control” , Nolinear Analysis: Real World Applications.