簡易檢索 / 詳目顯示

研究生: 李秀儀
Lee, Hsiu-Yi
論文名稱: 探討EMP2 在抑制Ras 誘發之腫瘤形成中扮演的角色
Study on Epithelial Membrane Protein-2 inhibits Ha-ras induced tumorigenesis
指導教授: 劉校生
Liu, Hsiao-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 52
中文關鍵詞: 抑癌基因腫瘤
外文關鍵詞: tetraspan, tumorigenesis, ha-ras, EMP2
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • EMP2 (Epithelial membrane protein-2),為GAS3/PMP22 family的成員,以tetraspan形式表現在細胞膜上之蛋白質。已知可抑制細胞分化、生長以及影響細胞凋亡。Dr. N. H. Chow以大豆萃取物Isoflavones處理膀胱癌細胞,EMP2基因有過量表現之情形,進一步研究發現EMP2可抑制膀胱癌細胞生長。此外,microarray結果顯示EMP2的過量表現可抑制Ras相關基因的表現例如: Ras homolog gene family, member Q (RHOQ)、member of Ras oncogene family-like 4 (RABL4)、Ras and Rab interactor 3 (RIN3)。已知人類約有30%的腫瘤具有Ras突變,膀胱癌為Ras 突變的好發腫瘤之一。但目前對EMP2如何抑制腫瘤形成的機制並不清楚。本研究主要探討EMP2是否可抑制Ras活化所誘發之腫瘤以及影響哪些生物特性。首先將EMP2綠色螢光蛋白質體pEMP2-GFP送入一個具有Ras 可調控系統的細胞株 (7-4),建立永久之細胞株。結果發現EMP2可抑制Ras之表現量以及活性,此抑制是在後轉錄之階段,然而究竟是Ras合成減少或是Ras 蛋白的分解加速有待進一步之釐清。活體外試驗中(in vitro)也證實過量表現EMP2的細胞生長速率降低,但細胞的移動性並沒有明顯的被抑制。而EMP2過量表達可抑制Ras活化誘發之群落形成能力。此外,EMP2過量表達亦會引起細胞之凋亡並且影響細胞週期。將同時表現EMP2以及Ras之細胞株利用皮下方式分別注入免疫正常(ICR)以及免疫缺失(SCID)之老鼠,均可抑制Ras誘發的腫瘤。在ICR老鼠實驗中腫瘤大小約減少6-27倍,而在免疫缺失的SCID老鼠中腫瘤只減少3倍,此結果顯示EMP2的確可抑制Ras活化導致的腫瘤形成,此外宿主免疫力亦扮演一定之角色。進一步分析老鼠的腫瘤,表現EMP2之腫瘤血管的數量也比較少。綜合以上所述,本研究發現EMP2可透過抑制Ras活性影響細胞的生長,誘發細胞凋亡以及抑制血管新生達到抑制腫瘤形成。本研究證實EMP2具有Ras所誘發之腫瘤,對抑制Ras相關腫瘤之治療提供莫大的幫助。

    Epithelial membrane protein-2 (EMP2), a member of GAS3/PMP22 family, is a tetraspan protein and has been implicated in the control of cell growth, proliferation and cell apoptosis. Dr. N. H. Chow’s study revealed that soy isoflavones could enhance the expression level of EMP2 and inhibited the growth of bladder cancer cells. Besides, in microarray data EMP2 overexpression inhibited Ras related genes, such as Ras homolog gene family, member Q (RHOQ)、member of Ras oncogene family-like 4 (RABL4)、Ras and Rab interactor 3 (RIN3)。Ha-ras mutations are common in bladder carcinomas. It is interesting to reveal whether EMP2 overexpression can inhibit Ras related tumor formation. pEMP2-GFP fusion plasmid was transfected into Ras inducible cell line (7-4) to establish the stable cell lines. The results of the stable cell lines overexpressing EMP2 demonstrated that EMP2 can inhibit Ras activity as well as Ras protein expression and the regulation is at post-transcription level. EMP2 overexpression suppressed Ras induced cell proliferation but not cell migration. Further analysis showed that EMP2 overexpresion can induce cell apoptosis through disruption of the cell cycle progression. EMP overexpression could also suppress Ras induced colony formation. The EMP2 overexpression cells and 7-4 cells were subcutaneously injected into ICR and SCID mice, which are immune competent and immune deficient, respectively. For tumor formation, the tumor size in ICR and SCID mice was 6~27 fold and 3 fold smaller than the control Ras alone induced tumor. These results suggest that EMP2 can inhibit Ras induced tumor formation in mice and host immunity is also involved. Moreover, EMP2 overexpression can inhibit blood vessel formation. All toghther, we reveal that EMP2 overexpression inhibits Ras-related tumorigenesis, possibly through suppressing Ras activity, inducing cell apoptosis and decreasing blood vessels. In conclusion, EMP2 possesses features of tumor suppresser and has the potential to be used to against Ras-related cancers.

    中文摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 ix 緒論 1  I 總論 1  II. Ras 基因對腫瘤影響 2  III. EMP2 4 材料與方法 7  I. 菌種與細胞株 7  II. 細菌與細胞及培養液 7  III. 使用的抗體 8  IV. 質體的製備 8  V. 建立持續表現外源DNA之細胞株 9  VI. 抽取RNA 10  VII. 反轉錄聚合酵素連鎖反應(RT-PCR) 11  VIII. 蛋白質電泳及西方墨點 12  IX. GST-fusion protein pull-dwon 13  X. 冷光酵素活性分析 (Luciferase activity assay) 14  XI. 細胞生長之分析 (MTT assay) 14  XII. 曠時攝影 (Time lapse recording) 15  XIII. 細胞軟洋菜膠生長之分析 15  XIV. 細胞致癌性分析 16  XV. 免疫組織染色      16  XVI. 細胞週期之分析 17  XVII. 細胞凋亡的定量分析 17  XVIII. 備置EMP2 RNAi 18 結果 19  I. EMP2是否影響Ras之表現量以及Ras下游的訊息傳遞 19   1. 確認建立的永久細胞株具有EMP2-GFP蛋白質表現 19   2. EMP2的過量表現是否會影響Ras活性及表現量 19   3. EMP2的過量表現對Ras下游訊息的影響 20    a. EMP2的過量表現是否影響細胞的生長 20    b. EMP2的過量表現是否誘發細胞之凋亡 21    c. EMP2的過量表現是否影響細胞週期 22  II. EMP2是否具有抑制Ras相關之致癌特性 22   1. 過量表現EMP2的細胞株是否影響細胞的移動性 22   2. EMP2的過量表現是否影響Ha-ras 轉型細胞之群落生長能力 23   3. EMP2的過量表現是否可抑制老鼠腫瘤的形成 23   4. EMP2的過量表現是否影響腫瘤中血管的形成 24  III. 建立表現EMP2 shRNA 的細胞株 25   1. 建立表現EMP2 shRNA 序列的質體 25 討論 26 參考文獻 30 自述 52

    孫瑩. (2004) 探索大豆異黃酮類抗癌的機轉: EMP2和ITM1基因之研究. 國立成功大學碩士論文
    Adams, J. M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
    Adjei, A. A. (2001). Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93, 1062-1074.
    Arbiser, J. L., Moses, M. A., Fernandez, C. A., Ghiso, N., Cao, Y., Klauber, N., Frank, D., Brownlee, M., Flynn, E., Parangi, S., et al. (1997). Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci U S A 94, 861-866.
    Ben-Porath, I., Kozak, C. A., and Benvenisty, N. (1998). Chromosomal mapping of Tmp (Emp1), Xmp (Emp2), and Ymp (Emp3), genes encoding membrane proteins related to Pmp22. Genomics 49, 443-447.
    Blackledge, G., Averbuch, S., Kay, A., and Barton, J. (2000). Anti-EGF receptor therapy. Prostate Cancer Prostatic Dis 3, 296-302.
    Boschek, C. B., Jockusch, B. M., Friis, R. R., Back, R., Grundmann, E., and Bauer, H. (1981). Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24, 175-184.
    Breier, G., Blum, S., Peli, J., Groot, M., Wild, C., Risau, W., and Reichmann, E. (2002). Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer 97, 142-148.
    Chang, M. Y., Won, S. J., Yang, B. C., Jan, M. S., and Liu, H. S. (1999). Selective activation of Ha-ras(val12) oncogene increases susceptibilityof NIH/3T3 cells to TNF-alpha. Exp Cell Res 248, 589-598.
    Chin, L., Tam, A., Pomerantz, J., Wong, M., Holash, J., Bardeesy, N., Shen, Q., O'Hagan, R., Pantginis, J., Zhou, H., et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468-472.
    Coqueret, O. (2003). New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13, 65-70.
    Cox, A. D., and Der, C. J. (1994). Biological assays for cellular transformation. Methods Enzymol 238, 277-294.
    Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., and Barrett, J. C. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268, 884-886.
    Doree, M., and Galas, S. (1994). The cyclin-dependent protein kinases and the control of cell division. Faseb J 8, 1114-1121.
    End, D. W. (1999). Farnesyl protein transferase inhibitors and other therapies targeting the Ras signal transduction pathway. Invest New Drugs 17, 241-258.
    Feramisco, J. R., Gross, M., Kamata, T., Rosenberg, M., and Sweet, R. W. (1984). Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38, 109-117.
    Fernandez, A., Udagawa, T., Schwesinger, C., Beecken, W., Achilles-Gerte, E., McDonnell, T., and D'Amato, R. (2001). Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93, 208-213.
    Giehl, K. (2005). Oncogenic Ras in tumour progression and metastasis. Biol Chem 386, 193-205.
    Gupta, S., and Knowlton, A. A. (2005). HSP60, Bax, apoptosis and the heart. J Cell Mol Med 9, 51-58.
    Hendry, B. M., Khwaja, A., Qu, Q. Y., and Shankland, S. J. (2006). Distinct functions for Ras GTPases in the control of proliferation and apoptosis in mouse and human mesangial cells. Kidney Int 69, 99-104.
    Jankowski, S. A., Mitchell, D. S., Smith, S. H., Trent, J. M., and Meltzer, P. S. (1994). SAS, a gene amplified in human sarcomas, encodes a new member of the transmembrane 4 superfamily of proteins. Oncogene 9, 1205-1211.
    Jetten, A. M., and Suter, U. (2000). The peripheral myelin protein 22 and epithelial membrane protein family. Prog Nucleic Acid Res Mol Biol 64, 97-129.
    Kedar, D., Baker, C. H., Killion, J. J., Dinney, C. P., and Fidler, I. J. (2002). Blockade of the epidermal growth factor receptor signaling inhibits angiogenesis leading to regression of human renal cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 8, 3592-3600.
    Kohl, N. E., Wilson, F. R., Thomas, T. J., Bock, R. L., Mosser, S. D., Oliff, A., and Gibbs, J. B. (1995). Inhibition of Ras function in vitro and in vivo using inhibitors of farnesyl-protein transferase. Methods Enzymol 255, 378-386.
    Kranenburg, O., Gebbink, M. F., and Voest, E. E. (2004). Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta 1654, 23-37.
    Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R., and Pouyssegur, J. (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271, 20608-20616.
    Lewin, B. (1990). Driving the cell cycle: M phase kinase, its partners, and substrates. Cell 61, 743-752.
    Liu, H. S., Chen, C. Y., Lee, C. H., and Chou, Y. I. (1998). Selective activation of oncogenic Ha-ras-induced apoptosis in NIH/3T3 cells. Br J Cancer 77, 1777-1786.
    Liu, H. S., Scrable, H., Villaret, D. B., Lieberman, M. A., and Stambrook, P. J. (1992). Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res 52, 983-989.
    Lukas, J., Bartkova, J., and Bartek, J. (1996). Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D-cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol 16, 6917-6925.
    Macpherson, I., and Montagnier, L. (1964). Agar Suspension Culture for the Selective Assay of Cells Transformed by Polyoma Virus. Virology 23, 291-294.
    Marken, J. S., Schieven, G. L., Hellstrom, I., Hellstrom, K. E., and Aruffo, A. (1992). Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci U S A 89, 3503-3507.
    Mullauer, L., Fujita, H., Suzuki, H., Katabami, M., Hitomi, Y., Ogiso, Y., and Kuzumaki, N. (1990). Elevated gelsolin and alpha-actin expression in a flat revertant R1 of Ha-ras oncogene-transformed NIH/3T3 cells. Biochem Biophys Res Commun 171, 852-859.
    Musgrove, E. A. (2006). Cyclins: roles in mitogenic signaling and oncogenic transformation. Growth Factors 24, 13-19.
    Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R. S. (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55, 4575-4580.
    Rak, J., Yu, J. L., Kerbel, R. S., and Coomber, B. L. (2002). What do oncogenic mutations have to do with angiogenesis/vascular dependence of tumors? Cancer Res 62, 1931-1934.
    Repasky, G. A., Chenette, E. J., and Der, C. J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14, 639-647.
    Sawada, S., Yoshimoto, M., Odintsova, E., Hotchin, N. A., and Berditchevski, F. (2003). The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras. J Biol Chem 278, 26323-26326.
    Shaw, R. J., and Cantley, L. C. (2006). Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430.
    Sherr, C. J. (1996). Cancer cell cycles. Science 274, 1672-1677.
    Shields, J. M., Pruitt, K., McFall, A., Shaub, A., and Der, C. J. (2000). Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol 10, 147-154.
    Sinenko, S. A., and Mathey-Prevot, B. (2004). Increased expression of Drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene 23, 9120-9128.
    Sleiman, R. J., Catchpoole, D. R., and Stewart, B. W. (1998). Drug-induced death of leukaemic cells after G2/M arrest: higher order DNA fragmentation as an indicator of mechanism. Br J Cancer 77, 40-50.
    Stacey, D. W., and Kung, H. F. (1984). Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310, 508-511.
    Street, V. A., Goldy, J. D., Golden, A. S., Tempel, B. L., Bird, T. D., and Chance, P. F. (2002). Mapping of Charcot-Marie-Tooth disease type 1C to chromosome 16p identifies a novel locus for demyelinating neuropathies. Am J Hum Genet 70, 244-250.
    Szala, S., Kasai, Y., Steplewski, Z., Rodeck, U., Koprowski, H., and Linnenbach, A. J. (1990). Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci U S A 87, 6833-6837.
    Taylor, V., and Suter, U. (1996). Epithelial membrane protein-2 and epithelial membrane protein-3: two novel members of the peripheral myelin protein 22 gene family. Gene 175, 115-120.
    Udagawa, T., Fernandez, A., Achilles, E. G., Folkman, J., and D'Amato, R. J. (2002). Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. Faseb J 16, 1361-1370.
    Vallbohmer, D., and Lenz, H. J. (2005). Epidermal growth factor receptor as a target for chemotherapy. Clin Colorectal Cancer 5 Suppl 1, S19-27.
    Wadehra, M., Su, H., Gordon, L. K., Goodglick, L., and Braun, J. (2003). The tetraspan protein EMP2 increases surface expression of class I major histocompatibility complex proteins and susceptibility to CTL-mediated cell death. Clin Immunol 107, 129-136.
    Wang, C. X., Wadehra, M., Fisk, B. C., Goodglick, L., and Braun, J. (2001). Epithelial membrane protein 2, a 4-transmembrane protein that suppresses B-cell lymphoma tumorigenicity. Blood 97, 3890-3895.
    Weber, J. D., Raben, D. M., Phillips, P. J., and Baldassare, J. J. (1997). Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 326 ( Pt 1), 61-68.
    Wilson, H. L., Wilson, S. A., Surprenant, A., and North, R. A. (2002). Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277, 34017-34023.
    Winston, J. T., Coats, S. R., Wang, Y. Z., and Pledger, W. J. (1996). Regulation of the cell cycle machinery by oncogenic ras. Oncogene 12, 127-134.
    Wu, Z. Z., Chien, C. M., Yang, S. H., Lin, Y. H., Hu, X. W., Lu, Y. J., Wu, M. J., and Lin, S. R. (2006). Induction of G2/M phase arrest and apoptosis by a novel enediyne derivative, THDA, in chronic myeloid leukemia (K562) cells. Mol Cell Biochem.
    Yang, J. J., Kang, J. S., and Krauss, R. S. (1998). Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol Cell Biol 18, 2586-2595.

    下載圖示 校內:2007-08-31公開
    校外:2007-08-31公開
    QR CODE