簡易檢索 / 詳目顯示

研究生: 莊子毅
Chuang, Tzu-Yi
論文名稱: 無機鈣鈦礦電阻式記憶體於新穎光感應用開發
Development of the All-Inorganic Halide Perovskite RRAM Devices for Novel Photosensing Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 135
中文關鍵詞: 電阻式記憶體鹵素鈣鈦礦材料電阻轉換機制量子點光感測器
外文關鍵詞: ReRAM, Halide perovskite, Resistive switching, Quantum dots, Photo detectors
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著諸如物聯網與人工智慧等新興應用技術的蓬勃發展,傳統非揮發式記憶體如NOR、NAND等,益發不足以應對益發增加的記憶體需求。為了克服這些問題,許多新興非揮發記憶體結構亦隨之被提出。其中,電阻式隨機存取記憶體由於其出色的切換時間、簡易結構等,已被廣為期許為下一世代的通用記憶體。而於物聯網應用中,除了高密度存取需求外,感測器亦是開發物聯網系統的重要元件之一,因此近年來於感測器市場亦有顯著的成長。
    本篇研究成功實現以CsPbBr3量子點結構優化之Cs4PbBr6無機鈣鈦礦材料光感記憶體,除了具多位元存儲能力外,更展現超過104的開關比,以及優越的記憶體開關操作次數。除此之外,本研究中更探討了該元件之紫外光光感能力,通過其展現的獨特光激切換特性,更成功開發出其純光激操作編程能力。該新穎特性有助於整合傳統系統中獨立操作之感測器與記憶體元件,開發出具商業價值之新興記憶體元件。

    With the rapid development of emerging technologies such as the Internet of Things (IoT) and artificial intelligence (AI), conventional non-volatile memories like NOR and NAND are increasingly insufficient to meet the growing demand for memory use. To overcome these challenges, many new non-volatile memory structures have been proposed. Resistive random-access memory (RRAM) has been highly anticipated as the next-generation universal memory due to its excellent switching time and simple structure among all the candidates.
    As for the IoT applications, in addition to high-density access requirements, sensors are also one of essential components in developing IoT systems. As a result, the sensor market has witnessed significant growth recently.
    This study successfully fabricated an inorganic Cs4PbBr6 perovskite-based photosensing memory optimized by the inserted CsPbBr3 quantum dot structures. In addition to the exhibited multi-bit storage capability, it demonstrated a switch ratio exceeding 104 and excellent memory-switching operation cycles. Furthermore, the study explored the ultraviolet light sensitivity of the device and successfully developed it into a pure optically stimulated programming system through its unique optical switching characteristics. This novel feature facilitates the integration of independent sensor and memory components in conventional systems, leading to the development of emerging memory devices with commercial value.

    摘要 I Abstract III 誌謝 V Contents IX List of Figures XV List of Tables XXII Chapter 1 Introduction 1 1.1 Background 1 1.2 Emerging Non-volatile Memory 4 1.2.1 MRAM 4 1.2.2 STT-MRAM 6 1.2.3 FeRAM 8 1.2.4 PCRAM 10 1.2.5 ReRAM 12 1.3 Motivation 14 1.4 Organization of the Thesis 17 Chapter 2 Literature review 19 2.1 Resistive Random Access Memory 19 2.1.1 Fundamental Definitions 19 2.1.2 Resustive Swithching Behaviors 20 2.1.3 Conduction Mechanisms 22 2.1.3.1 Ohmic Conduction 23 2.1.3.2 Schottky Emission 24 2.1.3.3 Poole-Frenkel Emission 26 2.1.3.4 Hopping Conduction 27 2.1.3.5 Space-charge-limit-current 29 2.1.3.6 Tunneling 31 2.2 Overview of Perovskite Materials 33 2.2.1 A Historical Review of Perovskite 33 2.2.2 Halide Perovskite Materials 35 2.2.3 All-inorganic Perovskite Materials 37 2.2.4 Lead Halide Perovskite Nanoparticles 39 Chapter 3 Experimental Procedure 41 3.1 Fabrication Equipment 41 3.1.1 Spin Coater 41 3.1.2 Oven 42 3.1.3 Direct Current Sputtering (DC Sputtering) 43 3.1.4 Electron Beam Evaporator 44 3.1.5 Thermal Evaporation System 46 3.2 Material Analysis Equipment 48 3.2.1 Alpha-step Profilometer 48 3.2.2 Atomic Force Microscopy (AFM) 49 3.2.3 X-ray Diffraction (XRD) 51 3.2.4 X-ray Photoelectron Spectroscopy (XPS) 52 3.2.5 Energy-dispersive X-ray Spectroscopy (EDS) 54 3.2.6 Focused Ion Beam (FIB) 55 3.2.7 Transmission Electron Microscopy (TEM) 57 3.3 Electrical Analysis Equipment 59 3.3.1 Agilent B1500A 59 3.4 Optical Analysis Equipment 61 3.4.1 Absorption Spectroscopy 61 3.5 Fabrication Process 63 3.5.1 Substrate Preparation 63 3.5.1.1 Substrate Cleaning 63 3.5.1.2 ITO Surface Treatment 63 3.5.2 Resistive Switching Layer Synthesis and Deposition 64 3.5.2.1 PEDOT: PSS Layer Deposition 64 3.5.2.2 PVK Layer Deposition 64 3.5.2.3 Cs4PbBr6 Layer Deposition 64 3.5.2.4 CsPbBr3 Quantum Dots Structure Synthesis 65 3.5.3 Top Electrode Deposition 65 Chapter 4 Results and Discussion 68 4.1 Pristine device without CsPbBr3 QDs 68 4.1.1 Physical Properties 68 4.1.1.1 TEM image of Device Cross-section 68 4.1.1.2 Energy Dispersive Spectroscopy of Elements Analysis 69 4.1.1.3 X-ray Diffraction Analysis 70 4.1.1.4 Chemical Composition Analysis 71 4.1.2 Electrical Properties 72 4.1.2.1 DC IV Characteristics 72 4.1.2.2 Curve Fitting (Conduction Mechanism Analysis) 74 4.1.2.3 Multi-level Storage 76 4.1.2.4 Endurance 77 4.1.2.5 Data Retention 78 4.1.2.6 Cumulative Probability 79 4.2 Improved design with CsPbBr3 QDs 81 4.2.1 Physical Properties 81 4.2.1.1 TEM image of Device Cross-section 81 4.2.1.2 Energy Dispersive Spectroscopy of Elements Analysis 83 4.2.1.3 X-ray Diffraction Analysis 85 4.2.1.4 Chemical Composition Analysis 87 4.2.1.5 Surface Morphology Analysis 89 4.2.2 Electrical Properties 91 4.2.2.1 DC IV Characteristics 91 4.2.2.2 Curve Fitting (Conduction Mechanism Analysis) 94 4.2.2.3 Multi-level Storage 96 4.2.2.4 Endurance 97 4.2.2.5 Data Retention 99 4.2.2.6 Cumulative Probability 100 4.2.2.7 Device-to-Device Uniformity 104 4.2.2.8 Temperature-dependent Measurement 105 4.2.2.9 Synaptic Characteristics 106 4.3 Photo-electronic Properties of the Perovskite ReRAM 109 4.3.1 Photonic Properties of Halide Perovskite 109 4.3.1.1 Absorption Spectrum 109 4.3.1.2 Transmittance Spectrum 110 4.3.1.3 Photosensing Behavior of Perovskite ReRAM 111 4.3.2 Hybrid Operation of Perovskite ReRAM 113 4.3.2.1 Hybrid Electrical-optical Operation of Pristine Design 113 4.3.2.2 Hybrid Electrical-optical Operation of Improved Design 114 4.3.2.3 Hybrid Operation under Electrical Stress 115 4.3.3 All-optical Operation of Perovskite ReRAM 117 4.3.3.1 Investigation of the Photoexcitation Time 117 4.3.3.2 Investigation of the photoexcitation Frequency 118 4.3.3.3 All-optical Operation of Improved Design 119 4.3.3.4 Optical Switching Mechanisms of the Device 120 Chapter 5 Conclusion 125 Chapter 6 Future Works 126 References 128

    [1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” in The Bell System Technical Journal, vol. 46, no. 6, pp. 1288-1295, July-Aug. 1967, doi: 10.1002/j.1538-7305.1967.tb01738.x
    [2] J. Ayling, R. Moore, and G. Tu, “A high-performance monolithic store,” 1969 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Philadelphia, PA, USA, 1969, pp. 36-37, doi: 10.1109/ISSCC.1969.1154746
    [3] C. Monzio Compagnoni, A. Goda, A. S. Spinelli, P. Feeley, A. L. Lacaita, and A. Visconti, “Reviewing the evolution of the NAND flash technology,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1609–1633, 2017. doi:10.1109/jproc.2017.2665781
    [4] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanoscale Research Letters, vol. 9, no. 1, 2014. doi:10.1186/1556-276x-9-526
    [5] H.-S. P. Wong, “Emerging memory devices,” 2011 International Semiconductor Device Research Symposium (ISDRS), College Park, MD, USA, 2011, pp. 1-1, doi: 10.1109/ISDRS.2011.6135200
    [6] S. Yu and P. -Y. Chen, “Emerging Memory Technologies: Recent Trends and Prospects,” in IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43-56, Spring 2016, doi: 10.1109/MSSC.2016.2546199
    [7] S. Yu, Resistive Random Access Memory (RRAM). Morgan & Claypool Publishers, 2016.
    [8] W. J. Gallagher and S. S. Parkin, “Development of the magnetic tunnel junction mram at IBM: From first junctions to a 16-Mb MRAM demonstrator chip,” IBM Journal of Research and Development, vol. 50, no. 1, pp. 5–23, 2006. doi:10.1147/rd.501.0005
    [9] M. Julliere, “Tunneling between ferromagnetic films,” Physics Letters A, vol. 54, no. 3, pp. 225–226, 1975. doi:10.1016/0375-9601(75)90174-7.
    [10] A. Islam, N. S. Ranjan, and A. K. Dwivedi, “Compact design of an MTJ-based non-volatile cam cell with read/write operations,” Microsystem Technologies, vol. 26, no. 10, pp. 3259–3270, 2018. doi:10.1007/s00542-018-4008-x
    [11] T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-Transfer Torque Ram Technology: Review and Prospect,” Microelectronics Reliability, vol. 52, no. 4, pp. 613–627, 2012. doi:10.1016/j.microrel.2011.09.028
    [12] T. Tsakalakos, I. A. Ovid’ko, and A. K. Vasudevan, “Nanostructures: Synthesis, functional properties and application,” SpringerLink, https://link.springer.com/book/10.1007/978-94-007-1019-1 [accessed Jul. 11, 2023].
    [13] S. W. Fong, C. M. Neumann, and H.-S. P. Wong, “Phase-change memory—towards a storage-class memory,” IEEE Transactions on Electron Devices, vol. 64, no. 11, pp. 4374–4385, 2017. doi:10.1109/ted.2017.2746342
    [14] K. Kamiya, M. Y. Yang, S.-G. Park, B. M.-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi, “On-off switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels,” Applied Physics Letters, vol. 100, no. 7, 2012. doi:10.1063/1.3685222
    [15] P.-Y. Chen and S. Yu, “Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design,” IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022–4028, 2015. doi:10.1109/ted.2015.2492421
    [16] Technavio, “Sensor Market by End-user and Geography - Forecast and Analysis 2022-2026,” Growth Industry Analysis, Jan., 2022. [Online], Available: https://www.technavio.com [accessed Jul. 11, 2023].
    [17] B. J. Bohn, Exciton Dynamics in Lead Halide Perovskite Nanocrystals. Springer, 2021.
    [18] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” Journal of Applied Physics, vol. 33, no. 9, pp. 2669–2682, 1962. doi:10.1063/1.1702530
    [19] I. G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U.-In. Chung, and J.T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004. doi:10.1109/iedm.2004.1419228
    [20] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6, pp. 1951–1970, 2012. doi:10.1109/jproc.2012.2190369
    [21] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, vol. 11, no. 6, pp. 28–36, 2008. doi:10.1016/s1369-7021(08)70119-6
    [22] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nanoscience and Technology, pp. 158–165, 2009. doi:10.1142/9789814287005_0016
    [23] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical metallization memories—fundamentals, applications, prospects,” Nanotechnology, vol. 22, no. 28, p. 289502, 2011. doi:10.1088/0957-4484/22/28/289502
    [24] F.-C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, vol. 2014, pp. 1–18, 2014. doi:10.1155/2014/578168
    [25] E. Lim and R. Ismail, “Conduction mechanism of Valence Change Resistive Switching Memory: A Survey,” Electronics, vol. 4, no. 3, pp. 586–613, 2015. doi:10.3390/electronics4030586
    [26] N. S. Arul and V. D. Nithya, Revolution of Perovskite: Synthesis, Properties and Applications. S.l.: SPRINGER, 2021.
    [27] J. Sinkankas, “Gemstone & Mineral Data Book: A compilation of data, recipes, formulas and instructions for the mineralogist, gemologist, lapidary, jeweler, craftsman and collector,” Geoscience Pr, 1994.
    [28] St. v. Náray-Szabó, “Der Strukturtyp des perowskits (CaTiO3),” Naturwissenschaften, vol. 31, no. 16–18, pp. 202–203, 1943. doi:10.1007/bf01481913
    [29] H. F. Kay and P. C. Bailey, “Structure and properties of CaTiO3,” Acta Crystallographica, vol. 10, no. 3, pp. 219–226, 1957. doi:10.1107/s0365110x57000675
    [30] B. Wang, X. Xiao, and T. Chen, “Perovskite photovoltaics: A high-efficiency newcomer to the Solar Cell Family,” Nanoscale, vol. 6, no. 21, pp. 12287–12297, 2014. doi:10.1039/c4nr04144e
    [31] A. von Hippel, R. G. Breckenridge, F. G. Chesley, and L. Tisza, “High dielectric constant ceramics,” Industrial & Engineering Chemistry, vol. 38, no. 11, pp. 1097–1109, 1946. doi:10.1021/ie50443a009
    [32] J.-H. Im, J. Chung, S.-J. Kim, and N.-G. Park, “Synthesis, structure, and photovoltaic property of a Nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3,” Nanoscale Research Letters, vol. 7, no. 1, 2012. doi:10.1186/1556-276x-7-353
    [33] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.-G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Advanced Energy Materials, vol. 5, no. 15, p. 1500477, 2015. doi:10.1002/aenm.201500477
    [34] D. Liu, Q. Lin, Z. Zang, M. Wang, P. Wangyang, X. Tang, M. Zhou, and W. Hu, “Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device,” ACS Applied Materials & Interfaces, vol. 9, no. 7, pp. 6171–6176, 2017. doi:10.1021/acsami.6b15149
    [35] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X = cl, br, and I): Novel optoelectronic materials showing bright emission with wide color gamut,” Nano Letters, vol. 15, no. 6, pp. 3692–3696, 2015. doi:10.1021/nl5048779
    [36] F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly-luminescent and color-tunable colloidal CH3NH3PbX3 (X=Br, I, Cl) quantum dots: Potential alternatives for display technology,” International Photonics and OptoElectronics, 2015. doi:10.1364/pfe.2015.pw2e.3
    [37] P. Pal, K.-J. Lee, S. Thunder, S. De, P.-T. Huang, T. Kämpfe, and Y.-H. Wang, “Bending resistant multibit memristor for flexible Precision Inference Engine Application,” IEEE Transactions on Electron Devices, vol. 69, no. 8, pp. 4737–4743, 2022. doi:10.1109/ted.2022.3186965
    [38] K.-J. Lee, Y.-C. Weng, L.-W. Wang, H.-N. Lin, P. Pal, S.-Y. Chu, D. Lu, and Y.-H. Wang, “High linearity synaptic devices using Ar plasma treatment on HfO2 thin film with non-identical pulse waveforms,” Nanomaterials, vol. 12, no. 18, p. 3252, 2022. doi:10.3390/nano12183252
    [39] L.-W. Wang, C.-W. Huang, K.-J. Lee, S.-Y. Chu, and Y.-H. Wang, “Multi-level resistive Al/Ga2O3/ITO switching devices with interlayers of graphene oxide for neuromorphic computing,” Nanomaterials, vol. 13, no. 12, p. 1851, 2023. doi:10.3390/nano13121851
    [40] Y. Niu, X. Yu, X. Dong, D. Zheng, S. Liu, Z. Gan, K. Chang, B. Liu, K. Jiang, Y. Li, and H. Wang, “Improved Al2O3 RRAM performance based on SiO2/MoS2 quantum dots hybrid structure,” Applied Physics Letters, vol. 120, no. 2, p. 022106, 2022. doi:10.1063/5.0070400
    [41] Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, “Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode,” ACS Nano, vol. 4, no. 10, pp. 6162–6168, 2010. doi:10.1021/nn1017582
    [42] “NCKU, Core Facility Center”, [Online]. Available: https://ctrmost-cfc.ncku.edu.tw [accessed Jul. 11, 2023].
    [43] J. Long, A. Nand, and S. Ray, “Application of spectroscopy in additive manufacturing,” Materials, vol. 14, no. 1, p. 203, 2021. doi:10.3390/ma14010203
    [44] C.-Y. Huang, S.-H. Huang, C.-L. Wu, Z.-H. Wang, and C.-C. Yang, “Cs4PbBr6/CsPbBr3 nanocomposites for all-inorganic electroluminescent perovskite light-emitting diodes,” ACS Applied Nano Materials, vol. 3, no. 12, pp. 11760–11768, 2020. doi:10.1021/acsanm.0c02274
    [45] C.-Y. Huang, C.-C. Wu, C.-L. Wu, and C.-W. Lin, “CsPbBr3 perovskite powder, a robust and mass-producible single-source precursor: Synthesis, characterization, and optoelectronic applications,” ACS Omega, vol. 4, no. 5, pp. 8081–8086, 2019. doi:10.1021/acsomega.9b00385
    [46] Y. Li, W. Shao, L. Chen, J. Wang, J. Nie, H. Zhang, S. Zhang, R. Gao, X. Ouyang, X. Ouyang, and Q. Xu, “Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection,” NPG Asia Materials, vol. 13, no. 1, 2021. doi:10.1038/s41427-021-00308-w
    [47] H. Cai, M. Lao, J. Xu, Y. Chen, C. Zhong, S. Lu, A. Hao, and R. Chen, “All-inorganic perovskite Cs4PbBr6 thin films in optoelectronic resistive switching memory devices with a logic application,” Ceramics International, vol. 45, no. 5, pp. 5724–5730, 2019. doi:10.1016/j.ceramint.2018.12.038
    [48] A. M. Müller, J. Plenge, S. R. Leone, S. E. Canton, B. S. Rude, J. D. Bozek, “Core electron binding energy shifts of AlBr3 and Al2Br6 vapor,” Journal of Electron Spectroscopy and Related Phenomena, vol. 154, no. 1–2, pp. 32–37, 2006. doi:10.1016/j.elspec.2006.09.002
    [49] R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films,” Advanced Functional Materials, vol. 25, no. 39, pp. 6218–6227, 2015. doi:10.1002/adfm.201502340

    無法下載圖示
    2026-08-09公開
    電子論文及紙本論文均尚未授權公開
    QR CODE