簡易檢索 / 詳目顯示

研究生: 張家豪
Chang, Chia-Hao
論文名稱: 長鏈非編碼核糖核酸MIR4500HG003調節的三陰性乳癌轉移的分子機制
Molecular mechanism of lncRNA MIR4500HG003-mediated triple negative breast cancer metastasis
指導教授: 呂佩融
Lu, Pei-Jung
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 85
中文關鍵詞: 長鏈非編碼核糖核酸 MIR4500HG003微小核糖核酸 483-3pMMP9三陰性乳癌轉移乳腺癌
外文關鍵詞: lncRNA MIR4500HG003, miR-483-3p, MMP9, TNBC metastasis, breast cancer
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三陰性乳癌(TNBC)是一種具有高度侵襲性的乳腺癌,它的特徵是缺乏三種常見的受體,分別是雌激素受體(ER)、孕激素受體(PR)和人表皮生長因子受體 2 (HER2)。 三陰性乳癌佔據了大約 15-20%的乳腺癌病例,而且與不良預後有高度 相關性。治療三陰性乳癌時往往會遇到的一個挑戰就是它會遠處轉移至大腦、肺、肝 臟、骨骼以及其他器官,此外三陰性乳癌的遠處轉移會顯著降低三陰性乳癌患者的 5 年內生?率至 12%。長鏈非編碼核糖核酸(lncRNA)被定義為由 200 個或更多核苷 酸組成的非編碼轉錄本。目前已有研究指出長鏈非編碼核糖核酸會在乳腺癌中異常表 達,並在腫瘤轉移中扮演轉移因子的角色。我們在此假設長鏈非編碼核糖核可能會調 控三陰性乳癌的轉移並與三陰性乳癌患者的癌症進展有相關性。基於初步的核糖核酸 定序結果中,觀察到在高度轉移性的三陰性乳癌細胞中長鏈非編碼核糖核酸 MIR4500HG003 的表達會顯著上升。 而在細胞實驗結果中,MIR4500HG003 的過度 表達不僅會使三陰性乳癌細胞的遷移和侵襲能力增加,而且加速了三陰性乳癌在小鼠 體內轉移的進展並且導致腫瘤轉移比例的增加。此外,我們的研究結果顯示, MIR4500HG003 的高度表達與乳腺癌和三陰性乳癌患者較差的整體生?率和無病生 ?率有著正相關。在 MIR4500HG003 所介導的轉移的潛在機制中,我們的研究結果 顯示了 MIR4500HG003 的過度表達會使 MMP9 表現量增加,而 MMP9 是一種與上 皮-間質轉化相關的蛋白,該蛋白在降解基底膜和促進細胞侵襲中扮演著重要角色。 根據長鏈非編碼核糖核酸的目前的已知功能中,我們研究了會與 MIR4500HG003 和 MMP9-3'UTR 會同時結合的微小核糖核酸(miRNA)。我們發現微小核糖核酸 483- 3p 在與會跟 MIR4500HG003 結合的微小核糖核酸們中排名靠前,並且與 MMP9- 3'UTR 有著強烈的結合力。此外,我們的回補實驗也證實出了 MIR4500HG003 會去 吸附微小核糖核酸 483-3p 然後抑制微小核糖核酸 483-3p 的功能,從而上調 MMP9 的 表現。目前的研究結論是,長鏈非編碼核糖核酸 MIR4500HG003 會藉由通過微小核 糖核酸 483-3p-MMP9 的訊息傳遞路徑去促進三陰性乳癌的轉移能力。綜合以上敘述, 長鏈非編碼核糖核酸 MIR4500HG003 可以作為三陰性乳癌病人腫瘤轉移的診斷以及 預後指標。

    Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer characterized by the absence of three common receptors, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC accounts for approximately 15-20% of all breast cancer cases and is associated with a poor prognosis. A key challenge in treating TNBC is its tendency for distant metastasis to the brain, lungs, liver, and bones, which significantly contributes to the lower 5-year survival rate of TNBC patients, reducing it to 12%. Long non-coding RNAs (lncRNAs) are defined as non-coding transcripts consisting of more than 200 nucleotides. They have been reported to be aberrantly expressed in breast cancer and play a role as metastasis factors in the disease. We hypothesize that lncRNAs may regulate TNBC metastasis and be associated with the progression of TNBC patients. Based on the RNA sequencing from preliminary results, it is observed that the expression of lncRNA MIR4500HG003 is significantly upregulated in highly metastatic TNBC cells. The overexpression of MIR4500HG003 not only demonstrates an increase in migration and invasion capabilities of TNBC cells in vitro but also accelerates the progression of TNBC metastasis and leads to an increased proportion of metastasis in vivo. Furthermore, our findings indicate that high expression of MIR4500HG003 is associated with poor overall survival and disease-free survival in both breast cancer (BC) and TNBC patients. In the underlying mechanism of MIR4500HG003- mediated metastasis, our results indicate the upregulation of MMP9, an epithelial- mesenchymal transition (EMT) related gene that plays a crucial role in degrading the basement membrane and promoting cell invasion. According to the cellular functions of lncRNA, we investigate the miRNA candidates, which can bind with MIR4500HG003 and MMP9-3’UTR. MiR-483-3p is identified that is top-ranked in the MIR4500HG003 associated candidate miRNAs and has strong binding force with MMP9-3’UTR. Furthermore, our restore experiments verify the functional role of MIR4500HG003 as a sponge for sequestering miR-483-3p, thereby up-regulating the expression of MMP9. The conclusion of the current study is that lncRNA MIR4500HG003 promotes metastasis through the MIR4500HG003/miR-483-3p/MMP9 axis in TNBC. Collectively, our results demonstrate that MIR4500HG003 has the potential to serve as a diagnostic and prognostic marker for TNBC patients.

    ABSTRACT I 中文摘要 II 致謝 III CONTENT IV INTRODUCTION1 Breast cancer1 Metastasis 1 Long non-coding RNA 2 LncRNAs as metastasis factors in breast cancer 3 MATERIALS AND METHODS 5 Western blot analysis 5 Gelatin zymography 5 Cell line culture6 RNA extraction6 cDNA synthesis for mRNA and lncRNA 6 Poly(A)-tail modification and cDNA synthesis for miRNA 7 Quantitative real-time polymerase chain reaction (qRT-PCR) 7 Migration and invasion assays 7 MS2-tagged RNA affinity purification (MS2-TRAP) 8 Reporter assay 9 Clinical specimens 9 In situ hybridization (ISH) 9 Human disease animal models 10 Statistical analysis10 RESULTS11 MIR4500HG003 was up-regulated highly metastatic MDA-MB231_1-5 cells11 MIR4500HG003 increases the metastatic ability of TNBC cells in vitro and in vivo. 12 MIR4500HG003 mediates the expression of MMP9 in TNBC cells. 14 MiR-483-3p physically interacts with MIR4500HG003 15 MIR4500HG003 regulates the expression of MMP9 through sequestering miR-483-3p 16 High expression of MIR4500HG003 is correlated with poor overall survival and disease-free survival in TNBC patients 19 CONCLUSION AND DISCUSSION 21 FIGURES AND TABLES 24 APPENDIXES 82 REFERENCE 83

    1. Siegel, R.L., et al., Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 2022. 72(1): p. 7-33.
    2. Singh, D.D. and D.K. Yadav, TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines, 2021. 9(8).
    3. Moo, T.A., et al., Overview of Breast Cancer Therapy. PET Clin, 2018. 13(3): p. 339- 354.
    4. Miller, K.D., et al., Cancer treatment and survivorship statistics, 2022. CA: A Cancer Journal for Clinicians, 2022. 72(5): p. 409-436.
    5. Yin, L., et al., Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res, 2020. 22(1): p. 61.
    6. SEER*Explorer: An interactive website for SEER cancer statistics [Internet]. Surveillance Research Program, National Cancer Institute; 2023 Apr 19. [updated: 2023 Jun 8; cited 2023 Jun 13]. Available from: https://seer.cancer.gov/statistics- network/explorer/. Data source(s): SEER Incidence Data, November 2022 Submission (1975-2020), SEER 22 registries.
    7. Foulkes, W.D., I.E. Smith, and J.S. Reis-Filho, Triple-Negative Breast Cancer. New England Journal of Medicine, 2010. 363(20): p. 1938-1948.
    8. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 28.
    9. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34.
    10. Valastyan, S. and Robert A. Weinberg, Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 2011. 147(2): p. 275-292.
    11. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial– mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 2019. 20(2): p. 69-84.
    12. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial– mesenchymal transition. Nature Reviews Molecular Cell Biology, 2014. 15(3): p. 178- 196.
    13. Herranz, N., et al., Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol, 2008. 28(15): p. 4772-81.
    14. Mattick, J.S., et al., Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology, 2023. 24(6): p. 430-447.
    15. Statello, L., et al., Gene regulation by long non-coding RNAs and its biologicalfunctions. Nature Reviews Molecular Cell Biology, 2021. 22(2): p. 96-118.
    16. Jin, H., et al., lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. Mol Ther Nucleic Acids, 2021. 25: p. 613-637.
    17. Wang, Y., et al., LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. Journal of Experimental Medicine, 2019. 217(3): p. e20190950.
    18. McHugh, C.A., et al., The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature, 2015. 521(7551): p. 232-236.
    19. Negishi, M., et al., A New lncRNA, APTR, Associates with and Represses the CDKN1A/p21 Promoter by Recruiting Polycomb Proteins. PLOS ONE, 2014. 9(4): p. e95216.
    20. Bernard, D., et al., A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. The EMBO Journal, 2010. 29(18): p. 3082-3093.
    21. Zhou, W., et al., Long noncoding RNA LINC00899 suppresses breast cancer progression by inhibiting miR-425. Aging (Albany NY), 2019. 11(22): p. 10144-10153.
    22. Lin, H.-C., et al., The hypoxia-responsive lncRNA NDRG-OT1 promotes NDRG1 degradation via ubiquitin-mediated proteolysis in breast cancer cells. Oncotarget,2017. 9(12).
    23. Xu, S., et al., The MS-lincRNA landscape reveals a novel lincRNA BCLIN25 thatontributes to tumorigenesis by upregulating ERBB2 expression via epigenetic modification and RNA–RNA interactions in breast cancer. Cell Death & Disease, 2019. 10(12): p. 920.
    24. Li, Y., et al., SNHG3 Functions as miRNA Sponge to Promote Breast Cancer Cells Growth Through the Metabolic Reprogramming. Applied Biochemistry and Biotechnology, 2020. 191(3): p. 1084-1099.
    25. Shi, Y., et al., The long noncoding RNA SPRY4-IT1 increases the proliferation of human breast cancer cells by upregulating ZNF703 expression. Molecular Cancer, 2015. 14(1): p. 51.
    26. Chen, R., et al., Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Research, 2017. 45(17): p. 9947-9959.
    27. Basak, P., et al., Long Non-Coding RNA H19 Acts as an Estrogen Receptor Modulator that is Required for Endocrine Therapy Resistance in ER+ Breast Cancer Cells. Cellular Physiology and Biochemistry, 2018. 51(4): p. 1518-1532.
    28. Hu, Q., et al., Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature Immunology, 2019. 20(7): p. 835-851.
    29. Jiang, X., et al., NEAT1 contributes to breast cancer progression through modulating84miR-448 and ZEB1. Journal of Cellular Physiology, 2018. 233(11): p. 8558-8566.
    30. Tsai, M.-C., et al., Long Noncoding RNA as Modular Scaffold of Histone ModificationComplexes. Science, 2010. 329(5992): p. 689-693.

    無法下載圖示 校內:2028-08-22公開
    校外:2028-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE