簡易檢索 / 詳目顯示

研究生: 溫修賢
Wen, Hsiu-Hsien
論文名稱: 綠色合成多功能四氧化三鐵-葉綠素奈米核殼結構:提升催化、抗氧化,及磁振顯影效率
Green synthesis of Fe3O4-chlorophyllin core-shell nanostructure for catalyst, antioxidant, and MRI contrast enhancement
指導教授: 孫亦文
Sun, I-Wen
黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 84
中文關鍵詞: 葉綠素氧化鐵催化劑抗氧化劑核磁共振顯影劑
外文關鍵詞: chlorophyllin, Fe3O4, catalyst, antoxidant, MRI contrast enhancement
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用綠色合成的方法,將鐵葉綠素以一鍋化反應的方式,直接將葉綠素中心的鐵合成四氧化三鐵,並在表面修飾上葉綠素殼層,形成四氧化三鐵@葉綠素的核殼結構,這是第一個直接使用鐵葉綠素合成氧化鐵的例子。四氧化三鐵@葉綠素的核殼結構具有類過氧化物催化酶的性質,藉由米氏動力學可以得出動力學參數。我們也照光輔助催化有害有機分子,成功的分解了亞甲基藍,並成功地降解了對人體有害的酚類。四氧化三鐵@葉綠素核殼奈米粒子具有光輔助芬頓催化降解有機汙染物、去除自由基的抗氧化能力、和核振造影的顯影劑等多種功能,並且具有濃度依存的趨勢,即四氧化三鐵@葉綠素的核殼奈米粒子在低濃度時可作催化劑,中濃度時即有抗氧化效果、且高濃度時可供核振造影用。雖然這些都是四氧化三鐵為人所熟知的應用,但是目前還沒有人對於同一種四氧化三鐵同時做催化劑、抗氧化劑和核振造影顯影劑的研究,因此是十分新穎的研究。

    In view of that no synthesis of Fe3O4 using chlorophyllin has been reported, one-pot synthesis of the Fe3O4@chlorophyllin (Fe3O4@chl) directly was studied in this thesis. We discussed how the synthesis parameters affect the Fe3O4@chl including solvent condition, protective polymer, base, and synthesis temperature. The peroxidase-like catalysis kinetics of Fe3O4@chl was studied uing Michaelis-Menten model. Km and Vmax was obtained by fitting methods such as Linweaver-Burk plot, Hanes-Woolf plot, and Eadie-Hofstee plot. Photo-assisted Fenton reaction was validated by MB destruction, and worked for the hazardous phenol degradation. The excellent r2 relaxivity and high biocompatibility pave a way to MRI contrast reagent. Moreover, the scavenger ability was cer-tificated so that Fe3O4@chl have the potential to tumor MRI imaging and scavenger local ROS at the same time. The 3 in 1 multifunctional properties in a single material of Fe3O4 and have a dos-age-dependence has never been noticed.

    CONTENTS 中文摘要 III ABSTRACT IV 誌謝 V CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES XI Appendix XII Chapter 1 Introduction 1 1.1 Green chemistry 1 1.1.1 Natural product 1 1.2 Green synthesis of nanoparticles 1 1.2.1 Green synthesis of noble metal nanoparticle 1 1.2.2 Green synthesis of Fe3O4 2 1.3 Applications of iron oxide nanoparticles 3 1.3.1 Peroxidase-like catalysis 3 1.3.2 Radicals-induced oxidative stress 4 1.3.3 Superparamagnetic iron oxides based contrast agent for magnetic contrast image 6 1.4 Separation system of iron oxide nanoparticles. 6 Chapter 2 Motivation 14 Chapter 3 Method and Materials 18 3.1 Materials 18 3.2 Equipment 20 3.3 Synthesis and preparations Methods 21 3.3.1 Synthesis of the Fe3O4@chl NPs 21 3.3.2 Detection of catalytic activity. 21 3.3.3 Photo-assisted degradation of MB 21 3.3.4 Photo-assisted degradation of phenol 22 3.3.5 Reduction of 4-nitrophenol 23 3.3.6 DPPH radical scavenger assay 23 3.3.7 ABTS radical scavenger assay 24 3.3.8 Radical scavenger ability of Fe3O4@chl to prevent cells from damaging 24 3.3.9 DCFH-DA staining of the LPS-induced ROS 25 Chapter 4 Synthesis and Characteristic of Fe3O4@chl NPs 26 4.1 Preparation of the Fe3O4@chl NPs 26 4.2 Characterization of the Fe3O4@chl NPs 27 4.3 The role of N2H4 in the synthesis process 28 4.4 Solvent effect of the synthesis process 29 4.5 Protective agent with polymer 30 4.6 Temperature effect 30 4.7 Magnetic analysis and applications of Fe3O4@chl 31 Chapter 5 Investigation of the applications and functions of Fe3O4@chl NPs 33 5.1 Peroxidase-like catalytic activity 33 5.1.1 TMB assay to determine the peroxidase activity of Fe3O4@Chl 33 5.1.2 Photo-assisted Fenton-like degradation of MB 36 5.1.3 Photo-assisted Fenton-like degradation of phenol 36 5.1.4 Reductive catalytic performance of Fe3O4@chl 37 5.1.5 Comprehensive comparison of catalytic performance of the Fe3O4 38 5.2 Free radical scavenger assay 39 5.2.1 Intracellular ROS scavenger assay with Fe3O4@chl 40 Chapter 6 Conclusion 42 Reference 76

    (1) Anastas, P. T.; Warner, J. C. Green chemistry: theory and practice, Oxford Univer-sity Press: New York, 1998, 30.
    (2) All natural. Nat Chem Biol. 2007,3, 351.
    (3) Hussain, I., Singh, N.B., Singh, A. et al. Biotechnol. Lett. 2016, 38, 545.–560
    (4) Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638
    (5) Padalia, H. Moteriya, P. Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2015, 8, 732–741
    (6) Shikuo Li, S. Shen, Y. Xie, A.Yu, X. Qiu, L. Li, Z. Zhanga, Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem., 2007, 9, 852–858
    (7) Saif, S. Tahir, A. Chen, Y. Green synthesis of iron nanoparticles and their environ-mental applications and implications. Nanomaterials. 2016, 6, 209
    (8) Maheswari, K. C. Sreenivasula, R. P. Green Synthesis of Magnetite Nanoparticles through Leaf Extract of Azadirachta indica. J. Nanosci. Tech. 2016, 2, 189–191.
    (9) Al-Ruqeishi, M. S. Mohiuddin, T. Al-Saadi, L. K. Green synthesis of iron oxide nanorods from deciduous Omani mango tree leaves for heavy oil viscosity treatment. Arab. J. Chem. 2016, 19, 1-7.
    (10) Yew, Y. P. Shameli, K. Miyake, M. Kuwano, N. Khairudin, N B. B. A. Mohamad, S. E. B. and Lee, K. X. Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract. Nanoscale. Res. Lett. 2016,11, 276.
    (11) Barbaros, S. Meray, Z. Tecim, T. B. Genc, R. K. Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles. J Nano-part Res 2016, 18, 185
    (12) Hao, R. Xing, R. Xu, R. Hou, Y. Gao, Sun, S. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. J. Mater. Chem. 2010, 22, 2729-2742
    (13) Tartaj, P. Morales, M. P. Gonzalez-Carreño, T. Veintemillas-Verdaguer, S. Serna, C. J. The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage De-vices and Photoelectrochemical Water Splitting. Adv. Mater. 2011, 23, 5243–5249
    (14) Hussain, I., Singh, N.B., Singh, A. Green synthesis of nanoparticles and its po-tential application. Biotechnol Lett. 2016, 38, 545–560
    (15) Sadat, M. E. Baghbador, M. K. Dunn, A. W. Wagner, H. P. Ewing, R. C. Zhang, J. Xu, H. Pauletti, G. M. Mast, D. B. Sh, D. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 2014, 105, 091903
    (16) Lilova, K. I. Pearce, C. I. Gorski, C. Rosso, K. M. Navrotsky, A. Thermodynam-ics of the magnetite-ulvöspinel (Fe3O4-Fe2TiO4) solid solution. Am. Mineral, 2012, 97, 1330–1338
    (17) Xu, J. K. , Zhang F. F. Sun,J. J. , Jun Sheng , Wang, F. Sun, M. Bio and Nano-materials Based on Fe3O4. Molecules. 2014, 12, 21506-21582
    (18) Hao, R. Xing, R. Xu, R. Hou, Y. Gao, Sun, S. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles Adv. Mater. 2010, 22, 2729–2742
    (19) Gao, J. Gu, H. Xu, B. Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Acc. Chem. Res., 2009, 42, 1097–1107
    (20) Henriksen, A. Smith, A. T. Gajhede, M. The Structures of the Horseradish Pe-roxidase C-Ferulic Acid Complex and the Ternary Complex with Cyanide Suggest How Peroxidases Oxidize Small Phenolic Substrates. J. Biol. Chem. 1999. 274, 35005–35011
    (21) Kvaratskhelia, M. Winkel, C. Thorneley, RNF. Purification and Characterization of a Novel Class III Peroxidase Isoenzyme from Tea Leaves. Plant. Physiol. 1997, 114, 1237–1245
    (22) Kariya, K. Lee, E. Hirouchi, M. Hosokawa, M. Sayo, H. Purification and some properties of peroxidases of rat bone marrow. Biochim. Biophys. Acta. 1987, 911, 95–101.
    (23) Mathy-Hartert, M. Bourgeois, E. Grülke, S. Deby-Dupont, G. Caudron, I. Deby, C. Lamy, M. Serteyn, D. Purification of myeloperoxidase from equine polymorphonu-clear leucocytes. Can. J. Vet. Res. 1998, 62, 127–132
    (24) Wan, D., Li, W., Wang, G. J. of Materi. Eng. and Perform. 2016, 25, 4333
    (25) Ye, H. Mohar, J. Wang, Q. Catalano, M. Kim, M. J. Xia, X. Peroxidase-like prop-erties of Ruthenium nanoframes. Sci. Bull. 2016, 61, 1739–1745.
    (26) Li, J. Ai, Z. Zhang, L. Design of a neutral electro-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment. J Hazard Mater. 2009, 164, 18-25
    (27) Deng, Y. Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treat-ment. Curr. Pollution. Rep. 2015, 1, 167-176.
    (28) Wang, C. Liu, H. Sun, Z. Heterogeneous Photo-Fenton Reaction Catalyzed by
    Nanosized Iron Oxides for Water Treatment. Int. J. Photoenergy. 2012, 801694, 10 (29) Ebrahiem, E. E. Al-Maghrabi, M. N. Mobarki, A.R. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 2017, 10, S1674-S1679.
    (30) Habu, J. B. Ibeh, B. O. In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf ex-tract. Biol. Res. 2015, 48, 16.
    (31) Nimse, N. B. Palb, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv., 2015, 5, 27986-28006
    (32) Holmström, K. M. Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014, 15, 411-421
    (33) Aioub, M. Panikkanvalappil, S. R. El-Sayed, M. A. Platinum-Coated Gold Na-norods: Efficient Reactive Oxygen Scavengers That Prevent Oxidative Damage to-ward Healthy, Untreated Cells during Plasmonic Photothermal Therapy. ACS Nano, 2017, 11, 579–586
    (34) Marí, M. Morales, A. Colell, A. García-Ruiz, C. Fernández-Checa, JC. Mitochon-drial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009, 11, 2685-2700.
    (35) Kerksick, C. Willoughby, D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J. Int. Soc. Sports. Nutr. 2005, 9, 38-44.
    (36) Mytilineou, C. Kramer, BC. Yabut, JA. Glutathione depletion and oxidative stress. Parkinsonism Relat. Disord. 2002, 8, 385-392
    (37) Reşat Apak, R. Özyürek, M. Kubilay Güçlü, K.Çapanoğlu, E. Antioxidant Activ-ity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem., 2016, 64, 997–1027.
    (38) Reşat Apak, R. Özyürek, M. Kubilay Güçlü, K.Çapanoğlu, E. Antioxidant Activ-ity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays J. Agric. Food Chem., 2016, 64,1028−1045
    (39) Sahu, R. K. Kar, M. Routray, R. DPPH Free Radical Scavenging Activity of Some Leafy Vegetables used by Tribals of Odisha, India. J. Med. Plants. Stud. 2013, 1, 21-27.
    (40) Floegel, A. Kim, D. O. Chung, S. J. Koo, S. I. Chun, O. K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food. Compost. Anal. 2011, 24, 1043-1048
    (41) Wang, Y. X. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging. Med. Surg. 2011, 1, 35-40.
    (42) Jung, J.W. Kang, H. R. Kim, M. H. Lee, W. Min, K. U. Han, M. H. Cho, S. H. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiol-ogy. 2012, 264, 414-422.
    (43) Li, H. Liaoa, J. Zhang, X. Facile synthesis of single crystal Fe3O4 sub-microcubes free of any capping agent and their catalytic performance in p-nitrophenol reduction. J. Mater. Chem. A, 2014,2, 17530-17535
    (44) Gokulakrishnan Subramanian, G. Madras, D. Remarkable enhancement of Fenton degradation at a wide pH range promoted by thioglycolic acid. Chem. Com-mun., 2017,53, 1136-1139
    (45) Wu, W. Xiao, X. Zhang, S. Li, H. Zhou, X. Jiang, C. One-Pot Reaction and Sub-sequent Annealing to Synthesis Hollow Spherical Magnetite and Maghemite Nanocages. Nanoscale. Res. Lett. 2009, 4, 926-931
    (46) Uchoa, A. F. Konopko, A. M. Baptista, M. S. Chlorophyllin Derivatives as Pho-tosensitizers: Synthesis and Photodynamic Properties. J. Braz. Chem. Soc. 2015, 26, 2615-2622.
    (47) Xu, H. Chen, R. Sun, Q. Lai, W. Su, Q. Huang, W. Liu, X. Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev., 2014, 43, 3259-3302.
    (48) Huber, D. L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 2005, 1, 482 –501
    (49) Mei, J. Hong, Y. Lam, J. W. Qin, A. Tang, Y. Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429−5479
    (50) Frank Würthner, F. Kaiser, E. Chantu R. Saha-Möller, C. R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem., Int. Ed. 2011, 50, 3376−3410
    (51) Chang, H.Kao, M-J. Chen, T-L. Chen, C-H. Cho, K-C. Lai, X-R. Characteriza-tion of natural dye extracted from wormwood and purple Ccbbage for dye-sensitized solar cells. Int. J. Photoenergy. 2013. 2013, 1-8.
    (52) Konwar, M. Baruah, G. D. On the nature of vibrational bands in the FTIR spec-tra of medicinal plant leaves. Arch. Appl. Sci. Res. 2011. 3, 214-221.
    (53) Yao, S. Yang, C. Zhao, H. Li, S.Lin, L.Wen, W. Liu, J. Hu, G. Li, W. Hou, Y. Ma, D. Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe5C2 Nano-particles. J. Phys. Chem. C. 2017, 121, 5154−5160
    (54) Gawande, M. B.Goswami, A. Felpin, F-X. Asefa, T.Huang, X. Silva, R. Zou, X. Zboril, R. Varma, R. S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis Chem. Rev. 2016, 116 (6), pp 3722–3811
    (55) GUETTARI, M. GOMATI, R. Influence of polyvinylpyrrolidone on the interac-tion between water and methanol. Braz. J. Chem. Eng. 2013, 30, 677-682.
    (56) Li, H. Gan, S. Han, D. Ma, W. Cai, B. Zhang, W. Zhang, Q. Niu, L. High per-formance Pd nanocrystals supported on SnO2-decorated graphene for aromatic nitro compound reduction. J. Mater. Chem. A, 2014, 2, 3461-3467
    (57) Matsumoto, Y. Jasanoff, A. T2 relaxation induced by clusters of superparamag-netic nanoparticles: Monte Carlo simulations J. Magn. Reson. Imaging. 2008, 26, 994–998
    (58) Berglund, G. I. Carlsson, G. H. Smith, A. T. Szöke, H. Henriksen, A. Hajdu, J. The catalytic pathway of horseradish peroxidase at high resolution. Nature, 2002, 417, 463-468
    (59) Schoof, Andrew, "Enzymatic Treatment of Phenolic Industrial Wastewater With Nitrogen Management" (2015). Electronic Theses and Dissertations. Paper 5277.
    (60) Gail, E. Gos, S. Kulzer, R. Lorösch, J. Rubo, A. Sauer, M Raf Kellen, R. Jay Reddy, Norbert Steier, W. H. "Cyano Compounds, Inorganic" (2012). Page 673-704.
    (61) Abdelkreem, M. Adsorption of Phenol from Industrial Wastewater Using Olive
    Mill Waste. APCBEE Procedia, 2013, 5, 349 – 357
    (62) Wang, W. Jiang, X. Chen, K. Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem. Commun., 2012, 48, 7289–7291
    (63) Gao, L. Zhuang, J. Nie, L. Zhang, J. Zhang, Y. Gu, N. Wang, T. Feng, J. Yang, D. Perrett, S. Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007. 2. 577-583
    (64) Yu,J. Ma, X. Yin, W. Gu, Z. Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv. 2016, 6, 81174
    (65) Yang, X. Chen, W. Huang, J. Zhou, Y. Zhu, Y. Li, C. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system. Sci. Rep. 2015, 5, 10632
    (66) Reza, K. M. Kurny, A. Gulshan, F. Photocatalytic Degradation of Methylene Blue by Magnetite+H2O2+UV Process. IJESD, 2016, 7, 325-329
    (67) Zazo, J. A. Casas, J. A. Mohedano, A. F. Gilarranz, M. A. Rodríguez , J. J. Chemical Pathway and Kinetics of Phenol Oxidation by Fenton's Reagent. Environ. Sci. Technol., 2005, 39, 9295–9302
    (68) Majd Al-Naji, M. Balu, A. M. Roibu, A. Goepel, M. Einicke, W-D. Luquec, R. Gläsera, R. Mechanochemical preparation of advanced catalytically active bifunctional Pd-containing nanomaterials for aqueous phase hydrogenation. Catal. Sci. Technol., 2015, 5, 2085-2091.
    (69) Jiang, Z. Jiang, D. Hossain, A. M. S. Qian, K. Xie, J. In situ synthesis of silver supported nanoporous iron oxide microbox hybrids from metal–organic frameworks and their catalytic application in p-nitrophenol reduction. Phys.Chem.Chem.Phys., 2015, 17, 2550-2559.
    (70) Gu, S. Wunder, S. Lu, Y. Ballauff, M. Kinetic analysis of the catalytic reduction of 4‑nitrophenol by metallic nanoparticles. J. Phys. Chem. C. 2014, 118, 18618−18625.
    (71) Zhu, M. Wang, C. Menga D. Diao, G. In situ synthesis of silver nanostructures on magnetic Fe3O4@C core–shell nanocomposites and their application in catalytic re-duction reactions. J. Mater. Chem. A, 2013, 1, 2118-2125.
    (72) Menumerov, E. Hughes, R. A. Neretina, S. Catalytic reduction of 4‑nitrophenol: a quantitative assessment of the role of dissolved oxygen in determining the induction time. Nano Lett. 2016, 16, 7791−7797.
    (73) Huang, C. C. Chang, P. Y. Liu, C. L. Xu, J. P. Wu, S. P. Kuo, W. C. New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. Nanoscale. 2015, 7, 29, 12689-12697
    (74) Li, F. Li, Z. Zeng, C. Hu, Y. Laccase-assisted rapid synthesis of colloidal gold nanoparticles for the catalytic reduction of 4-nitrophenol. J. Braz. Chem. Soc., 2017. 28, 960-966.
    (75) Craft, B. D. Kerrihard, A. L. Amarowicz, R. Pegg, R. B. Phenol-Based Antioxi-dants and the In Vitro Methods Used for Their Assessment. Compr. Rev. Food. Sci. Food. Saf. 2012. 11. 148-173
    (76) Kalyanaraman, B. Darley-Usmar, V. Davies, K. J. Dennery, P. A. Forman, H. J. Grisham, M. B. Mann, G. E. Moore, K. Roberts, L. J. Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limita-tions. Free. Radic. Bio. Med. 2012. 52, 1-6

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE