| 研究生: |
黃偉政 Huang, Wei-Jheng |
|---|---|
| 論文名稱: |
泛素-蛋白酶體系統於登革病毒感染中的角色 Roles of Ubiquitin-Proteasome System in Dengue Virus Infection |
| 指導教授: |
賴明詔
Lai, Michael M.C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 泛素 、登革病毒 、prM |
| 外文關鍵詞: | Dengue virus, ubiquitination, prM, maturation |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泛素化為細胞內重要的轉譯後修飾之一,許多蛋白可藉由泛素化來參與並調控各個生理反應,例如蛋白質水解、細胞週期、訊息傳遞、DNA修復及細胞凋亡等;而諸多與泛素化相關的訊息路徑中,以泛素-蛋白酶體系統最為熟知且被廣為研究。過去的文獻指出,泛素-蛋白酶體系統在病毒複製中扮演重要的角色,而且參與在不同病毒生活史的各個階段。登革病毒 (Dengue virus, DENV) 屬於黃質病毒科 (Flaviviridae),基因體為單股正向RNA;在感染過程中,登革病毒利用宿主細胞以及登革病毒的蛋白酶轉譯出十種蛋白幫助其完成生活史,而病毒蛋白是否可藉由泛素化調控其自身功能並進而影響登革病毒的複製週期仍尚未釐清。在本研究中,我們發現登革病毒的prM及E蛋白可被泛素化修飾。以蛋白酶體抑制劑MG132阻斷細胞內的蛋白酶體功能後,登革病毒的複製亦會受到影響,顯示泛素-蛋白酶體系統於登革病毒的生活史中扮演重要的角色。在病毒感染的過程中,在不同時間點以MG132去阻斷細胞內的蛋白酶體功能,我們發現泛素-蛋白酶體系統明顯地參與在登革病毒複製的晚期。在登革病毒次基因體複製子 (subgenomic replicon)報導系統實驗中,我們發現泛素-蛋白酶體系統不影響登革病毒基因體的轉譯與複製;而在病毒釋放實驗中,MG132可明顯抑制登革病毒prM蛋白的表現以及細胞外的病毒效價。藉由TCA沈澱法濃縮並分析受感染細胞之上清液,我們發現MG132降低了上清液中病毒結構性蛋白的含量;而以MG132處理後的細胞,其產出的登革病毒仍可再於試管中以furin切割成熟,並恢復感染力,顯示MG132可抑制登革病毒的釋出。有趣的是,在試管內furin切割實驗中,高度泛素化的prM似乎更易受到furin的剪切,綜合上述,我們推測登革病毒藉由prM蛋白的泛素化修飾,調控病毒顆粒的成熟與釋放。
Protein ubiquitination, one of the post-translational modifications, regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, questions remained whether dengue viral proteins can be modified by ubiquitination and how the modification affects viral functions. By two independent screening assays, we found that two structural proteins of dengue virus (DENV), prM and E, were consistently ubiquitinated in infected cells. A kinetic study by pulse treatment of MG132, a proteasome inhibitor, during a single viral replication cycle showed that DENV was drastically inhibited by MG132 at a relatively late stage of replication. These results suggested that ubiquitin-proteasome system (UPS) may regulate DENV replication. By using DENV replicon and subgenomic construct containing a luciferase reporter, we found that neither DENV genomic RNA replication nor translation was the major target of MG132. However, DENV release seems to be attenuated since prM protein and DENV infectivity in the culture supernatant from MG132-treated cells were both reduced. In vitro DENV virion maturation assay showed that the infectivity of DENV, either derived from MG132- or solvent-treated cells, could be further enhanced by incubation with recombinant furin. Interestingly, in vitro furin cleavage assay revealed that prM derived from MG132-treatment, which is highly ubiqutinated, became more sensitive to furin cleavage than that derived from solvent control. Taken together, these findings suggest that prM protein is ubiquitinated to regulate DENV maturation processes. Disturbance of this fine-tuned machinery, such as MG132 treatment, may serve a novel anti-DENV strategy in the future.
1. Acosta, E.G., Castilla, V., Damonte, E.B., 2008. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. Journal of General Virology 89, 474-484.
2. Alen, M.M., Dallmeier, K., Balzarini, J., Neyts, J., Schols, D., 2012. Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Research 96, 280-287.
3. Alvarez, D.E., De Lella Ezcurra, A.L., Fucito, S., Gamarnik, A.V., 2005. Role of RNA structures present at the 3'UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200-212.
4. Amberg, S.M., Nestorowicz, A., McCourt, D.W., Rice, C.M., 1994. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. Journal of Virology 68, 3794-3802.
5. Sofia Lizeth Alcaraz-Estrada, Martha Yocupicio-Monroy, Rosa María del Angel, 2010. Insights into dengue virus genome replication. Future Virology 5, 575-592.
6. Avirutnan, P., Fuchs, A., Hauhart, R.E., Somnuke, P., Youn, S., Diamond, M.S., Atkinson, J.P., 2010. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. The Journal of Experimental Medicine 207, 793-806.
7. Bartelma, G., Padmanabhan, R., 2002. Expression, Purification, and Characterization of the RNA 5′-Triphosphatase Activity of Dengue Virus Type 2 Nonstructural Protein 3. Virology 299, 122-132.
8. Benarroch, D., Egloff, M.P., Mulard, L., Guerreiro, C., Romette, J.L., Canard, B., 2004. A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. The Journal of Biological Chemistry 279, 35638-35643.
9. Brabant, M., Baux, L., Casimir, R., Briand, J.P., Chaloin, O., Porceddu, M., Buron, N., Chauvier, D., Lassalle, M., Lecoeur, H., Langonne, A., Dupont, S., Deas, O., Brenner, C., Rebouillat, D., Muller, S., Borgne-Sanchez, A., Jacotot, E., 2009. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice. Apoptosis 14, 1190-1203.
10. Calisher, C.H., Karabatsos, N., Dalrymple, J.M., Shope, R.E., Porterfield, J.S., Westaway, E.G., Brandt, W.E., 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. Journal of General Virology 70, 37-43.
11. Carlton, J.G., Agromayor, M., Martin-Serrano, J., 2008. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proceedings of the National Academy of Sciences of the United States of America 105, 10541-10546.
12. Carpp, L.N., Galler, R., Bonaldo, M.C., 2011. Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles. Microbes and Infection / Institut Pasteur 13, 85-95.
13. Catteau, A., Roué, G., Yuste, V.J., Susin, S.A., Desprès, P., 2003. Expression of dengue ApoptoM sequence results in disruption of mitochondrial potential and caspase activation. Biochimie 85, 789-793.
14. Centers for Disease Control, R.O.C.(Taiwan), 2013. Clinical Manifestions, Diagnosis and Treatment of Dengue Fever / Dengue Hemorrhagic Fever (5E).
15. Che, P., Tang, H., Li, Q., 2013. The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 446, 303-313.
16. Chen, B.J., Lamb, R.A., 2008. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372, 221-232.
17. Chiu, M.W., Yang, Y.L., 2003. Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli. Biochemical and Biophysical Research Communications 309, 672-678.
18. Choi, A.G., Wong, J., Marchant, D., Luo, H., 2013. The ubiquitin-proteasome system in positive-strand RNA virus infection. Reviews in Medical Virology 23, 85-96.
19. Ciechanover, A., 1998. The ubiquitin-proteasome pathway: on protein death and cell life. The EMBO Journal 17, 7151-7160.
20. Cleaves, G.R., Ryan, T.E., Schlesinger, R.W., 1981. Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology 111, 73-83.
21. Clyde, K., Barrera, J., Harris, E., 2008. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379, 314-323.
22. Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L.F., Thery, C., Raposo, G., 2013. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science 126, 5553-5565.
23. Corless, L., Crump, C.M., Griffin, S.D., Harris, M., 2010. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. Journal of General Virology 91, 362-372.
24. Michelle D de Oliveira, André S de Oliveira, Nina R Dutra, Rafael F O França, Eduardo R Honda, Fernando B Zanchi, Clovis A Neves, Cynthia C da Silva, Benedito A L da Fonseca and Sérgio O De Paula, 2013. Enhancement of Dengue-2 E Protein Expression by the Expression of the Precursor Membrane Protein (Prm) of the Dengue-3 Virus. Journal of Vaccines & Vaccination 04.
25. Davidson, A.D., 2009. Chapter 2. New insights into flavivirus nonstructural protein 5. Advances in Virus Research 74, 41-101.
26. Delboy, M.G., Roller, D.G., Nicola, A.V., 2008. Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. Journal of Virology 82, 3381-3390.
27. Dowlatshahi, D.P., Sandrin, V., Vivona, S., Shaler, T.A., Kaiser, S.E., Melandri, F., Sundquist, W.I., Kopito, R.R., 2012. ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Developmental Cell 23, 1247-1254.
28. Falconar, A.K., 1997. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Archives of Virology 142, 897-916.
29. Fan, J., Liu, Y., Yuan, Z., 2014. Critical role of Dengue Virus NS1 protein in viral replication. Virologica Sinica 29, 162-169.
30. Fernandez-Garcia, M.D., Meertens, L., Bonazzi, M., Cossart, P., Arenzana-Seisdedos, F., Amara, A., 2011. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. Journal of Virology 85, 2980-2989.
31. Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Malerod, L., Fisher, E.M., Isaacs, A., Brech, A., Stenmark, H., Simonsen, A., 2007. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. The Journal of Cell Biology 179, 485-500.
32. Fischl, W., Bartenschlager, R., 2011. Exploitation of cellular pathways by Dengue virus. Current opinion in Microbiology 14, 470-475.
33. Green, A.M., Beatty, P.R., Hadjilaou, A., Harris, E., 2014. Innate immunity to dengue virus infection and subversion of antiviral responses. Journal of Molecular Biology 426, 1148-1160.
34. Greene, W., Zhang, W., He, M., Witt, C., Ye, F., Gao, S.J., 2012. The ubiquitin/proteasome system mediates entry and endosomal trafficking of Kaposi's sarcoma-associated herpesvirus in endothelial cells. PLoS Pathogens 8, e1002703.
35. Halstead, S.B., O'Rourke, E.J., 1977. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265, 739-741.
36. Harty, R.N., Brown, M.E., McGettigan, J.P., Wang, G., Jayakar, H.R., Huibregtse, J.M., Whitt, M.A., Schnell, M.J., 2001. Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. Journal of Virology 75, 10623-10629.
37. Hishiki, T., Han, Q., Arimoto, K., Shimotohno, K., Igarashi, T., Vasudevan, S.G., Suzuki, Y., Yamamoto, N., 2014. Interferon-mediated ISG15 conjugation restricts dengue virus 2 replication. Biochemical and Biophysical Research Communications 448, 95-100.
38. Hughes, H.R., Crill, W.D., Chang, G.J., 2012. Manipulation of immunodominant dengue virus E protein epitopes reduces potential antibody-dependent enhancement. Virology Journal 9, 115.
39. Hurley, J.H., 2010. The ESCRT complexes. Critical Reviews in Biochemistry and Molecular Biology 45, 463-487.
40. Incicco, J.J., Gebhard, L.G., Gonzalez-Lebrero, R.M., Gamarnik, A.V., Kaufman, S.B., 2013. Steady-state NTPase activity of Dengue virus NS3: number of catalytic sites, nucleotide specificity and activation by ssRNA. PLOS ONE 8, e58508.
41. Isaacson, M.K., Ploegh, H.L., 2009. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host & Microbe 5, 559-570.
42. Jaag, H.M., Stork, J., Nagy, P.D., 2007. Host transcription factor Rpb11p affects tombusvirus replication and recombination via regulating the accumulation of viral replication proteins. Virology 368, 388-404.
43. Kanlaya, R., Pattanakitsakul, S.N., Sinchaikul, S., Chen, S.T., Thongboonkerd, V., 2010. The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. Journal of Proteome Research 9, 4960-4971.
44. Kapoor, M., Zhang, L., Ramachandra, M., Kusukawa, J., Ebner, K.E., Padmanabhan, R., 1995. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. The Journal of Biological Chemistry 270, 19100-19106.
45. Karabatsos, N., 1978. Supplement to International Catalogue of Arboviruses including certain other viruses of vertebrates. The American Journal of Tropical Medicine and Hygiene 27, 372-440.
46. Karpe, Y.A., Meng, X.J., 2012. Hepatitis E virus replication requires an active ubiquitin-proteasome system. Journal of Virology 86, 5948-5952.
47. Keelapang, P., Sriburi, R., Supasa, S., Panyadee, N., Songjaeng, A., Jairungsri, A., Puttikhunt, C., Kasinrerk, W., Malasit, P., Sittisombut, N., 2004. Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. Journal of Virology 78, 2367-2381.
48. Kerkvliet, J., Papke, L., Rodriguez, M., 2011. Antiviral effects of a transgenic RNA-dependent RNA polymerase. Journal of Virology 85, 621-625.
49. Kielian, M., 2006. Class II virus membrane fusion proteins. Virology 344, 38-47.
50. Kimura, Y., Tanaka, K., 2010. Regulatory mechanisms involved in the control of ubiquitin homeostasis. Journal of Biochemistry 147, 793-798.
51. Ko, Y.C., 1989. Epidemiology of dengue fever in Taiwan. The Kaohsiung Journal of Medical Sciences 5, 1-11.
52. Komander, D., 2009. The emerging complexity of protein ubiquitination. Biochemical Society Transactions 37, 937-953.
53. Komander, D., Clague, M.J., Urbe, S., 2009. Breaking the chains: structure and function of the deubiquitinases. Nature reviews. Molecular Cell Biology 10, 550-563.
54. Krishnan, M.N., Ng, A., Sukumaran, B., Gilfoy, F.D., Uchil, P.D., Sultana, H., Brass, A.L., Adametz, R., Tsui, M., Qian, F., Montgomery, R.R., Lev, S., Mason, P.W., Koski, R.A., Elledge, S.J., Xavier, R.J., Agaisse, H., Fikrig, E., 2008. RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242-245.
55. Kulathu, Y., Komander, D., 2012. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature reviews. Molecular Cell Biology 13, 508-523.
56. Lee, J.A., Beigneux, A., Ahmad, S.T., Young, S.G., Gao, F.B., 2007. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology : CB 17, 1561-1567.
57. Lee, M.S., Hwang, K.P., Chen, T.C., Lu, P.L., Chen, T.P., 2006. Clinical characteristics of dengue and dengue hemorrhagic fever in a medical center of southern Taiwan during the 2002 epidemic. Journal of Microbiology, Immunology, and Infection 39, 121-129.
58. Lee, S., 2013. Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicological Research 29, 81-86.
59. Li, H., Clum, S., You, S., Ebner, K.E., Padmanabhan, R., 1999. The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. Journal of Virology 73, 3108-3116.
60. Li, L., Lok, S.M., Yu, I.M., Zhang, Y., Kuhn, R.J., Chen, J., Rossmann, M.G., 2008. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 1830-1834.
61. Li, W., Ye, Y., 2008. Polyubiquitin chains: functions, structures, and mechanisms. Cellular and Molecular Life Sciences 65, 2397-2406.
62. Libraty, D.H., Young, P.R., Pickering, D., Endy, T.P., Kalayanarooj, S., Green, S., Vaughn, D.W., Nisalak, A., Ennis, F.A., Rothman, A.L., 2002. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. The Journal of Infectious Diseases 186, 1165-1168.
63. Lin, C.F., Lei, H.Y., Shiau, A.L., Liu, C.C., Liu, H.S., Yeh, T.M., Chen, S.H., Lin, Y.S., 2003. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. Journal of Medical Virology 69, 82-90.
64. Lobigs, M., 1993. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proceedings of the National Academy of Sciences of the United States of America 90, 6218-6222.
65. Lopez, T., Silva-Ayala, D., Lopez, S., Arias, C.F., 2011. Replication of the rotavirus genome requires an active ubiquitin-proteasome system. Journal of Virology 85, 11964-11971.
66. Mackenzie, J.M., Jones, M.K., Young, P.R., 1996. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220, 232-240.
67. Mann, M., Jensen, O.N., 2003. Proteomic analysis of post-translational modifications. Nature Biotechnology 21, 255-261.
68. Messer, W.B., de Alwis, R., Yount, B.L., Royal, S.R., Huynh, J.P., Smith, S.A., Crowe, J.E., Jr., Doranz, B.J., Kahle, K.M., Pfaff, J.M., White, L.J., Sariol, C.A., de Silva, A.M., Baric, R.S., 2014. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proceedings of the National Academy of Sciences of the United States of America 111, 1939-1944.
69. Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S., Bartenschlager, R., 2007. The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. The Journal of Biological Chemistry 282, 8873-8882.
70. Miller, S., Sparacio, S., Bartenschlager, R., 2006. Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B. The Journal of Biological Chemistry 281, 8854-8863.
71. Mondotte, J.A., Lozach, P.Y., Amara, A., Gamarnik, A.V., 2007. Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. Journal of Virology 81, 7136-7148.
72. Morrison, J., Laurent-Rolle, M., Maestre, A.M., Rajsbaum, R., Pisanelli, G., Simon, V., Mulder, L.C., Fernandez-Sesma, A., Garcia-Sastre, A., 2013. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathogens 9, e1003265.
73. Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G., 2005. A structural perspective of the flavivirus life cycle. Nature reviews Microbiology 3, 13-22.
74. Munoz-Jordan, J.L., Sanchez-Burgos, G.G., Laurent-Rolle, M., Garcia-Sastre, A., 2003. Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences of the United States of America 100, 14333-14338.
75. Munoz Mde, L., Limon-Camacho, G., Tovar, R., Diaz-Badillo, A., Mendoza-Hernandez, G., Black, W.C.t., 2013. Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells. BioMed Research International 2013, 875958.
76. Nandi, D., Tahiliani, P., Kumar, A., Chandu, D., 2006. The ubiquitin-proteasome system. Journal of Biosciences 31, 137-155.
77. Normile, D., 2013. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science 342, 415.
78. Oh, C., Park, S., Lee, E.K., Yoo, Y.J., 2013. Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Scientific Reports 3, 2623.
79. Pierson, T.C., Fremont, D.H., Kuhn, R.J., Diamond, M.S., 2008. Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host & Microbe 4, 229-238.
80. Rey, F.A., Heinz, F.X., Mandl, C., Kunz, C., Harrison, S.C., 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291-298.
81. Rieser, E., Cordier, S.M., Walczak, H., 2013. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends in Biochemical Sciences 38, 94-102.
82. Rusten, T.E., Vaccari, T., Lindmo, K., Rodahl, L.M., Nezis, I.P., Sem-Jacobsen, C., Wendler, F., Vincent, J.P., Brech, A., Bilder, D., Stenmark, H., 2007. ESCRTs and Fab1 regulate distinct steps of autophagy. Current biology 17, 1817-1825.
83. Ryu, K.Y., Maehr, R., Gilchrist, C.A., Long, M.A., Bouley, D.M., Mueller, B., Ploegh, H.L., Kopito, R.R., 2007. The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. The EMBO Journal 26, 2693-2706.
84. Salinas, S., Kremer, E.J., 2012. Virus induced and associated post-translational modifications. Biology of the Cell 104, 119-120.
85. Satheshkumar, P.S., Anton, L.C., Sanz, P., Moss, B., 2009. Inhibition of the ubiquitin-proteasome system prevents vaccinia virus DNA replication and expression of intermediate and late genes. Journal of Virology 83, 2469-2479.
86. Schneider, R.J., Shenk, T., 1987. Impact of virus infection on host cell protein synthesis. Annual Review of Biochemistry 56, 317-332.
87. Schnell, J.D., Hicke, L., 2003. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. The Journal of Biological Chemistry 278, 35857-35860.
88. Schubert, U., Ott, D.E., Chertova, E.N., Welker, R., Tessmer, U., Princiotta, M.F., Bennink, J.R., Krausslich, H.G., Yewdell, J.W., 2000. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proceedings of the National Academy of Sciences of the United States of America 97, 13057-13062.
89. Simmons, C.P., Farrar, J.J., Nguyen v, V., Wills, B., 2012. Dengue. The New England Journal of Medicine 366, 1423-1432.
90. Somnuke, P., Hauhart, R.E., Atkinson, J.P., Diamond, M.S., Avirutnan, P., 2011. N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413, 253-264.
91. Teramoto, T., Boonyasuppayakorn, S., Handley, M., Choi, K.H., Padmanabhan, R., 2014. Substitution of NS5 N-terminal domain of dengue virus type 2 RNA with type 4 domain caused impaired replication and emergence of adaptive mutants with enhanced fitness. The Journal of Biological Chemistry.
92. Umareddy, I., Chao, A., Sampath, A., Gu, F., Vasudevan, S.G., 2006. Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. Journal of General Virology 87, 2605-2614.
93. van der Schaar, H.M., Rust, M.J., Chen, C., van der Ende-Metselaar, H., Wilschut, J., Zhuang, X., Smit, J.M., 2008. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathogens 4, e1000244.
94. Wan, S.W., Lin, C.F., Wang, S., Chen, Y.H., Yeh, T.M., Liu, H.S., Anderson, R., Lin, Y.S., 2013. Current progress in dengue vaccines. Journal of Biomedical Science 20, 37.
95. Wang, S., He, R., Anderson, R., 1999. PrM- and cell-binding domains of the dengue virus E protein. Journal of Virology 73, 2547-2551.
96. Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K., Walther, P., Fuller, S.D., Antony, C., Krijnse-Locker, J., Bartenschlager, R., 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host & Microbe 5, 365-375.
97. Westaway, E.G., 1987. Flavivirus replication strategy. Advances in Virus Research 33, 45-90.
98. WHO, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, Geneva.
99. Widjaja, I., de Vries, E., Tscherne, D.M., Garcia-Sastre, A., Rottier, P.J., de Haan, C.A., 2010. Inhibition of the ubiquitin-proteasome system affects influenza A virus infection at a postfusion step. Journal of Virology 84, 9625-9631.
100. Xie, X., Gayen, S., Kang, C., Yuan, Z., Shi, P.Y., 2013. Membrane topology and function of dengue virus NS2A protein. Journal of Virology 87, 4609-4622.
101. Yao, T., Ndoja, A., 2012. Regulation of gene expression by the ubiquitin-proteasome system. Seminars in Cell & Developmental Biology 23, 523-529.
102. Yu, C.Y., Chang, T.H., Liang, J.J., Chiang, R.L., Lee, Y.L., Liao, C.L., Lin, Y.L., 2012. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathogens 8, e1002780.
103. Yu, G.Y., Lai, M.M., 2005. The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. Journal of Virology 79, 644-648.
104. Yu, I.M., Holdaway, H.A., Chipman, P.R., Kuhn, R.J., Rossmann, M.G., Chen, J., 2009. Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. Journal of Virology 83, 12101-12107.
105. Yu, I.M., Zhang, W., Holdaway, H.A., Li, L., Kostyuchenko, V.A., Chipman, P.R., Kuhn, R.J., Rossmann, M.G., Chen, J., 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834-1837.
106. Yusof, R., 2000. Purified NS2B/NS3 Serine Protease of Dengue Virus Type 2 Exhibits Cofactor NS2B Dependence for Cleavage of Substrates with Dibasic Amino Acids in Vitro. Journal of Biological Chemistry 275, 9963-9969.
107. Zaitseva, E., Yang, S.T., Melikov, K., Pourmal, S., Chernomordik, L.V., 2010. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathogens 6, e1001131.
108. Zhang, X., Ge, P., Yu, X., Brannan, J.M., Bi, G., Zhang, Q., Schein, S., Zhou, Z.H., 2013. Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nature Structural & Molecular Biology 20, 105-110.
109. Zheng, A., Yuan, F., Kleinfelter, L.M., Kielian, M., 2014. A toggle switch controls the low pH-triggered rearrangement and maturation of the dengue virus envelope proteins. Nature Communications 5, 3877.