| 研究生: |
盧絲緹 Nurkhamidah, Siti |
|---|---|
| 論文名稱: |
旋光式聚乳酸與晶型或非晶型高分子間作用下之結晶型態和奈米級晶板自組裝 Crystalline Morphology and Nano-scale Lamellar Assembly in Chiral Polylactides Interacting with Crystalline or Amorphous Polymers |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 聚乳酸 、聚己二酸二丁酯 、聚對位乙烯基酚 、birefringence 、對掌性 、消光環 、單晶. |
| 外文關鍵詞: | Polylactides, PBA, PVPh, birefringence, chirality, ring band, single-crystal |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係針對超薄厚度之左旋聚乳酸的結晶型貌,和與右旋聚乳酸、聚己二酸二丁酯或聚對位乙烯基酚混摻系統下的相容性及球晶型貌的探討。晶板排列和厚度是影響聚乳酸產生不具雙折射,或聚雙折射之環狀消光環的控制因素。聚乳酸與聚乳酸錯合晶體一起結晶得到的球晶會比聚乳酸在聚乳酸錯合體為晶核之情況下來得更緊密並且可以減少聚乳酸產生龜裂。左旋聚乳酸與聚己二酸二丁酯混摻系統在聚乳酸熔點之下屬於上臨界溶液溫度(UCST)相行為,並且針對此混摻系統在一般厚度、塊材或超薄情況下的球晶型貌有深入的探討。左式聚乳酸/聚己二酸二丁酯 (50/50)混摻系統的結晶在上臨界溫度之下也就是結晶溫度在110oC呈現相域與環狀消光環的聚乳酸互相交疊,這種現象只會發生在短的熔融時間(Δtmax),因為鏈纏絡密度是比較少的,導致聚己二酸二丁酯鏈段在聚乳酸結晶時容易被排除在外,所以才會呈現聚乳酸與聚己二酸二丁酯的相分離。相分離現象也可在塊材的斷裂面呈現兩種不同孔洞大小,且小的孔洞與大的孔洞分別代表聚乳酸比例較多和聚己二酸二丁酯比例較多的相。利用溶劑蒸氣蝕刻方法,左旋聚乳酸/聚己二酸二丁酯 (50/50)混摻系統中聚乳酸環狀消光環的谷狀區域中晶板排列方向會交錯出現並且可觀察到光折射現象由負型球晶轉變中性,並最後形成雙環帶球晶。第一次探討左旋聚乳酸/聚己二酸二丁酯混摻系統中聚乳酸單晶的球晶型貌,在添加30wt%的聚己二酸二丁酯進左式聚乳酸並在結晶溫度110oC下晶板會呈現出六軸枝狀伴隨著單晶排列成的菱形。然而,在左旋聚乳酸/聚己二酸二丁酯 (50/50)混摻系統在相同晶溫度下,球晶呈現出樹枝狀型態,並且向一定方向做彎曲。左旋聚乳酸/聚己二酸二丁酯(50/50)和右旋聚乳酸/聚己二酸二丁酯(50/50)混摻系統都是因為聚己二酸二丁酯的加入才會對導致樹枝狀球晶的晶板有彎曲的現象且彎曲方向主要是因為聚乳酸的chirality,分別是逆時針和順時針方向。隨著結晶溫度的增加,球晶型貌會由具有彎曲的樹枝狀轉變成只有徑向成長的樹枝狀。左旋聚乳酸/聚己二酸二丁酯(50/50)在130oC下熔融結晶時,左旋聚乳酸具有正交式球晶中會包含逆時針方向的螺旋片狀晶體。左旋聚乳酸/聚對位乙烯基酚混摻系統在具有微弱作用力下呈現相容系統,並在組成為70/30有3種球晶型態一起存在於結晶溫度為120oC下,並依照形狀、雙折射和光學標誌分類為Type-1 (hexagonal crystals)、Type-2 (dendritic crystal)和Type-3 (complex combination of Type-1 and Type-2),左旋聚乳酸分子量、PVPh的存在、結晶溫度和成長速率都是對於形成此特殊現象必要的因素。
This study has been focused on the crystalline morphology of ultrathin film neat Poly(L-lactic acid) (PLLA), miscibility and crystalline morphology of its blend with Poly(D-lactic acid) (PDLA), poly(1,4-butylene adipate) (PBA) or poly(4-vinyl phenol) (PVPh). Lamellar arrangement and film thickness are the influencing factors for the formation of nonbirefringent or birefringent concentric ring-banded spherulites in neat PLLA. Co-crystallization of PLLA with stereocomplex polylactides (sc-PLA) spherulites tends to be more compact than that of PLLA spherulites crystallizing on sc-PLA nuclei and it can minimize the formation of cracks in PLLA spherulites. PLLA/PBA blend system exhibits upper-critical-solution-temperature (UCST) behavior below the melting temperature of PLLA. Crystalline morphology either in regular film thickness, bulk sample and ultrathin film of PLLA/PBA blends has been discussed in detailed. Crystallization of PLLA/PBA (50/50) blend below UCST (crystallization temperature (Tc) = 110 oC) shows that phase domains overlap with ring-banded spherulites of PLLA. This phenomenon only occur for short melting time (tmax) because the chain entanglement density is less, thus the PBA chains are easy to be mutually expelled from the PLLA chains during crystallization of PLLA, resulting in PLLA-rich and PBA-rich separate domains. Phase separation can also be observed in the fractured surface of bulk sample as shown by the appearance of two different pore sizes. Small and large pore sizes correspond to the PLLA-rich and PBA-rich domains, respectively. By using solvent-vapor-etching method, it shows that the alteration of lamellar orientation in the valley region of PLLA ring-banded spherulites in PLLA/PBA (50/50) blend induces the alteration of optical birefringence from negative to neutral and finally to double-ring-banded spherulites. For the first time, single-crystalline morphology of PLLA in PLLA/PBA blend has been discovered. At Tc = 110 oC, by adding 30 wt% PBA into PLLA, the lamellae exhibit six-stalk dendrites with single crystal packing in lozenge shape. However, for PLLA/PBA (50/50) blend at the same Tc, it exhibits dendritic spherulite with lamellar bending at certain direction. The formation of bending lamellae in dendritic spherulites of PLLA/PBA (50/50) and PDLA/PBA (50/50) blends is induced by the addition of PBA. Bending direction in the dendritic spherulites of PLLA or PDLA blended with PBA is dictated by the chirality, counter-clockwise and clockwise direction for PLLA/PBA (50/50) and PDLA/PBA (50/50) blends, respectively. With the increasing Tc, crystalline morphological change from dendritic spherulites with bending lamellae (Tc = 110 oC) to dendritic crystals in linear growth (Tc = 130 oC) is observed. PLLA dendritic crystals with straight branches in PLLA/PBA (50/50) blend melt-crystallized at 130 oC are composed by the framework of spiral lozenge crystals in counter-clockwise direction. PLLA/PVPh is miscible blend system with weak interaction. Three different types of spherulites co-exist at the same Tc (120 oC) of PLLA/PVPh (70/30) blend, code-named as Type-1 (hexagonal crystals), Type-2 (dendritic crystals), and Type-3 (complex-combination of Type-1 and Type-2), as distinguished from the shape, birefringence, and optical signs. A combination of several factors, such as PLLA molecular weights, presence of amorphous PVPh, crystallization temperature, and crystal growth rate, is necessary for formation of three uniquely different types of spherulites in PLLA.
References
[1] J.-R. Sarasua, R. E. Prud'homme, M. Wisniewski, A. Le Borgne, and N. Spassky, "Crystallization and Melting Behavior of Polylactides," Macromolecules, vol. 31, pp. 3895-3905, 1998.
[2] P. De Santis and A. J. Kovacs, "Molecular Conformation of Poly(S-lactic acid)," Biopolymers, vol. 6, pp. 299-306, 1968.
[3] W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, and P. Zugenmaier, "Crystal Structure, Conformation and Morphology of Solution-spun Poly(L-lactide) fibers," Macromolecules, vol. 23, pp. 634-642, 1990.
[4] D. Maillard and R. E. Prud'homme, "Chirality Information Transfer in Polylactides: From Main-Chain Chirality to Lamella Curvature," Macromolecules, vol. 39, pp. 4272-4275, 2006.
[5] D. Maillard and R. E. Prud'homme, "Crystallization of Ultrathin Films of Polylactides: From Chain Chirality to Lamella Curvature and Twisting," Macromolecules, vol. 41, pp. 1705-1712, 2008.
[6] D. Maillard and R. E. Prud’homme, "Differences Between Crystals Obtained in PLLA-Rich or PDLA-Rich Stereocomplex Mixtures," Macromolecules, vol. 43, pp. 4006-4010, 2010.
[7] Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, "Stereocomplex Formation between Enantiomeric Poly(lactides)," Macromolecules, vol. 20, pp. 904-906, 1987.
[8] T. Miyata and T. Masuko, "Morphology of Poly(l-lactide) Solution-grown Crystals," Polymer, vol. 38, pp. 4003-4009, 1997.
[9] T. Okihara, M. Tsuji, A. Kawaguchi, K.-I. Katayama, H. Tsuji, S.-H. Hyon, and Y. Ikada, "Crystal Structure of Stereocomplex of Poly(L-lactide) and Poly(D-lactide)," Journal of Macromolecular Science, Part B, vol. 30, pp. 119-140, 1991.
[10] L. Cartier, T. Okihara, and B. Lotz, "Triangular Polymer Single Crystals: Stereocomplexes, Twins, and Frustrated Structures," Macromolecules, vol. 30, pp. 6313-6322, 1997.
[11] Y. Yuryev, P. Wood-Adams, M.-C. Heuzey, C. Dubois, and J. Brisson, "Crystallization of Polylactide Films: An Atomic Force Microscopy Study of the Effects of Temperature and Blending," Polymer, vol. 49, pp. 2306-2320, 2008.
[12] H. Urayama, T. Kanamori, K. Fukushima, and Y. Kimura, "Controlled Crystal Nucleation in the Melt-crystallization of Poly(l-lactide) and Poly(l-lactide)/Poly(d-lactide) Stereocomplex," Polymer, vol. 44, pp. 5635-5641, 2003.
[13] L. Bouapao and H. Tsuji, "Stereocomplex Crystallization and Spherulite Growth of Low Molecular Weight Poly(L-lactide) and Poly(D-lactide) from the Melt," Macromolecular Chemistry and Physics, vol. 210, pp. 993-1002, 2009.
[14] N. Rahman, T. Kawai, G. Matsuba, K. Nishida, T. Kanaya, H. Watanabe, H. Okamoto, M. Kato, A. Usuki, M. Matsuda, K. Nakajima, and N. Honma, "Effect of Polylactide Stereocomplex on the Crystallization Behavior of Poly(l-lactic acid)," Macromolecules, vol. 42, pp. 4739-4745, 2009.
[15] M. Hirata and Y. Kimura, "Thermomechanical Properties of Stereoblock Poly(lactic acid)s with Different PLLA/PDLA Block Compositions," Polymer, vol. 49, pp. 2656-2661, 2008.
[16] S.-H. Li and E. M. Woo, "Kinetic Analysis on Effect of Poly(4-vinyl phenol) on Complex-Forming Blends of Poly(L-lactide) and Poly(D-lactide)," Polym. J, vol. 41, pp. 374-382, 2009.
[17] L. Chang and E. M. Woo, "Effects of Molten Poly(3-hydroxybutyrate) on Crystalline Morphology in Stereocomplex of Poly(L-lactic acid) with Poly(D-lactic acid)," Polymer, vol. 52, pp. 68-76, 2011.
[18] J. Sun, H. Yu, X. Zhuang, X. Chen, and X. Jing, "Crystallization Behavior of Asymmetric PLLA/PDLA Blends," The Journal of Physical Chemistry B, vol. 115, pp. 2864-2869, 2011.
[19] C. Fraschini, R. Plesu, J.-R. Sarasua, and R. E. Prud'homme, "Cracking in Polylactide Spherulites," Journal of Polymer Science Part B: Polymer Physics, vol. 43, pp. 3308-3315, 2005.
[20] Y. He, Z. Fan, J. Wei, and S. Li, "Morphology and Melt Crystallization of Poly(L-lactide) Obtained by Ring Opening Polymerization of L-lactide with Zinc Catalyst," Polymer Engineering & Science, vol. 46, pp. 1583-1589, 2006.
[21] P. J. Barham and A. Keller, "The Relationship Between Microstructure and Mode of Fracture in Polyhydroxybutyrate," Journal of Polymer Science Part B: Polymer Physics, vol. 24, pp. 69-77, 1986.
[22] J. Martinez-Salazar, M. Sanchez-Cuesta, P. J. Barham, and A. Keller, "Thermal Expansion and Spherulite Cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers," Journal of Materials Science Letters, vol. 8, pp. 490-492, 1989.
[23] J. K. Hobbs, T. J. McMaster, M. J. Miles, and P. J. Barham, "Cracking in Spherulites of Poly(hydroxybutyrate)," Polymer, vol. 37, pp. 3241-3246, 1996.
[24] J. Xu, B.-H. Guo, G.-Q. Chen, and Z.-M. Zhang, "Terraces on Banded Spherulites of Polyhydroxyalkanoates," Journal of Polymer Science Part B: Polymer Physics, vol. 41, pp. 2128-2134, 2003.
[25] K. Kuboyama and T. Ougizawa, "Solvent Induced Cracking and Morphology in Banded Spherulite of Poly(trimethylene terephthalate)," Polym. J, vol. 40, pp. 1005-1009, 2008.
[26] S. Nurkhamidah and E. M. Woo, "Effects of Crystallinity and Molecular Weight on Crack Behavior in Crystalline Poly(L-lactic acid)," Journal of Applied Polymer Science, vol. 122, pp. 1976-1985, 2011.
[27] S. Nurkhamidah and E. Woo, "Correlation of Crack Patterns and Ring Bands in Spherulites of Low Molecular Weight Poly(L-lactic acid)," Colloid & Polymer Science, vol. 290, pp. 275-288, 2012.
[28] S. Nurkhamidah and E. M. Woo, "Cracks and Ring Bands of Poly(3-hydroxybutyrate) on Precrystallized Poly(l-lactic acid) Template," Industrial & Engineering Chemistry Research, vol. 50, pp. 4494-4503, 2011.
[29] N. Inaba, K. Sato, S. Suzuki, and T. Hashimoto, "Morphology Control of Binary Polymer Mixtures by Spinodal Decomposition and Crystallization. 1. Principle of Method and Preliminary Results on PP/EPR," Macromolecules, vol. 19, pp. 1690-1695, 1986.
[30] H. Tanaka and T. Nishi, "New Types of Phase Separation Behavior during the Crystallization Process in Polymer Blends with Phase Diagram," Physical Review Letters, vol. 55, pp. 1102-1105, 1985.
[31] H. Tanaka and T. Nishi, "Local Phase Separation at the Growth Front of a Polymer Spherulite During Crystallization and Nonlinear Spherulitic Growth in a Polymer Mixture with a Phase Diagram," Physical Review A, vol. 39, pp. 783-794, 1989.
[32] K. Shimizu, H. Wang, Z. Wang, G. Matsuba, H. Kim, and C. C. Han, "Crystallization and Phase Separation Kinetics in Blends of Linear Low-density Polyethylene Copolymers," Polymer, vol. 45, pp. 7061-7069, 2004.
[33] H. Wang, K. Shimizu, E. K. Hobbie, Z.-G. Wang, J. C. Meredith, A. Karim, E. J. Amis, B. S. Hsiao, E. T. Hsieh, and C. C. Han, "Phase Diagram of a Nearly Isorefractive Polyolefin Blend," Macromolecules, vol. 35, pp. 1072-1078, 2001.
[34] A. Rameau, Y. Gallot, P. Marie, and B. Farnoux, "Deuterated Polystyrene-poly(α-methylstyrene) Blends: Range of Miscibility and Determination of the Interaction Parameter by Small Angle Neutron Scattering," Polymer, vol. 30, pp. 386-392, 1989.
[35] T. A. Callaghan and D. R. Paul, "Interaction Energies for Blends of Poly(methyl methacrylate), Polystyrene, and Poly(.alpha.-methylstyrene) by the Critical Molecular Weight Method," Macromolecules, vol. 26, pp. 2439-2450, 1993.
[36] L. L. Chang and E. M. Woo, "Morphology, Phase Diagrams, and UCST Behavior in Blends of Polystyrene with Poly(4-methylstyrene)," Macromolecular Chemistry and Physics, vol. 202, pp. 636-644, 2001.
[37] S.-H. Li and E. Woo, "Immiscibility with Upper-critical Solution Temperature Phase Diagrams for Poly(methyl methacrylate)/Polyesters Blends," Colloid & Polymer Science, vol. 286, pp. 253-265, 2008.
[38] H.-L. Chen, J. Chiu Hwang, J.-M. Yang, and R.-C. Wang, "Simultaneous Liquid–liquid Demixing and Crystallization and Its Effect on the Spherulite Growth in Poly(ethylene terephthalate)/Poly(ether imide) Blends," Polymer, vol. 39, pp. 6983-6989, 1998.
[39] W. R. Burghardt, "Phase Diagrams for Binary Polymer Systems Exhibiting Both Crystallization and Limited Liquid-liquid Miscibility," Macromolecules, vol. 22, pp. 2482-2486, 1989.
[40] J. P. Penning and R. St. John Manley, "Miscible Blends of Two Crystalline Polymers. 1. Phase Behavior and Miscibility in Blends of Poly(vinylidene fluoride) and Poly(1,4-butylene adipate)," Macromolecules, vol. 29, pp. 77-83, 1996.
[41] K. Fujita, T. Kyu, and R. St. John Manley, "Miscible Blends of Two Crystalline Polymers. 3. Liquid−Liquid Phase Separation in Blends of Poly(vinylidene fluoride)/Poly(butylene adipate)," Macromolecules, vol. 29, pp. 91-96, 1996.
[42] L.-Z. Liu, B. Chu, J. P. Penning, and R. S. J. Manley, "A Synchrotron SAXS Study of Miscible Blends of Semicrystalline Poly(vinylidene fluoride) and Semicrystalline Poly(1,4-butylene adipate)," Macromolecules, vol. 30, pp. 4398-4404, 1997.
[43] I. Isayeva, T. Kyu, and R. St. John Manley, "Phase Transitions, Structure Evolution, and Mechanical Properties of Blends of Two Crystalline Polymers: Poly(vinylidene fluoride) and Poly(butylene adipate)," Polymer, vol. 39, pp. 4599-4608, 1998.
[44] H.-L. Chen, "Miscibility and Crystallization Behavior of Poly(ethylene terephthalate)/Poly(ether imide) Blends," Macromolecules, vol. 28, pp. 2845-2851, 1995.
[45] H. Tomura, H. Saito, and T. Inoue, "Light Scattering Analysis of Upper Critical Solution Temperature Behavior in a Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blend," Macromolecules, vol. 25, pp. 1611-1614, 1992.
[46] J. S. Lee, A. A. Prabu, and K. J. Kim, "UCST-Type Phase Separation and Crystallization Behavior in Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blends under an External Electric Field," Macromolecules, vol. 42, pp. 5660-5669, 2009.
[47] W.-T. Chuang, U. S. Jeng, H.-S. Sheu, and P.-D. Hong, "Competition Between Phase Separation and Crystallization in a PCL/PEG Polymer Blend Captured by Synchronized SAXS, WAXS, and DSC," Macromolecular Research, vol. 14, pp. 45-51, 2006.
[48] J. M. Schultz, "Self-induced Field Model for Crystal Twisting in Spherulites," Polymer, vol. 44, pp. 433-441, 2003.
[49] D. C. Bassett and A. M. Hodge, "On Lamellar Organization in Banded Spherulites of Polyethylene," Polymer, vol. 19, pp. 469-472, 1978.
[50] A. Toda, T. Arita, and M. Hikosaka, "Three-dimensional Morphology of PVDF Single Crystals Forming Banded Spherulites," Polymer, vol. 42, pp. 2223-2233, 2001.
[51] D. C. Bassett, "Polymer Spherulites: A Modern Assessment," Journal of Macromolecular Science, Part B, vol. 42, pp. 227-256, 2003.
[52] H. D. Keith and F. J. Padden Jr, "Twisting Orientation and the Role of Transient States in Polymer Crystallization," Polymer, vol. 25, pp. 28-42, 1984.
[53] Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, and T. He, "Rhythmic Growth-Induced Concentric Ring-Banded Structures in Poly(ε-caprolactone) Solution-Casting Films Obtained at the Slow Solvent Evaporation Rate," Macromolecules, vol. 40, pp. 4381-4385, 2007.
[54] A. Frömsdorf, E. M. Woo, L.-T. Lee, Y.-F. Chen, and S. Förster, "Atomic Force Microscopy Characterization and Interpretation of Thin-Film Poly(butylene adipate) Spherulites with Ring Bands," Macromolecular Rapid Communications, vol. 29, pp. 1322-1328, 2008.
[55] Z. Gan, K. Kuwabara, M. Yamamoto, H. Abe, and Y. Doi, "Solid-state Structures and Thermal Properties of Aliphatic–aromatic Poly(butylene adipate-co-butylene terephthalate) Copolyesters," Polymer Degradation and Stability, vol. 83, pp. 289-300, 2004.
[56] T. Kyu, H. W. Chiu, A. J. Guenthner, Y. Okabe, H. Saito, and T. Inoue, "Rhythmic Growth of Target and Spiral Spherulites of Crystalline Polymer Blends," Physical Review Letters, vol. 83, pp. 2749-2752, 1999.
[57] Y. Duan, Y. Zhang, S. Yan, and J. M. Schultz, "In Situ AFM Study of the Growth of Banded Hedritic Structures in Thin Films of Isotactic Polystyrene," Polymer, vol. 46, pp. 9015-9021, 2005.
[58] Y. Duan, Y. Jiang, S. Jiang, L. Li, S. Yan, and J. M. Schultz, "Depletion-Induced Nonbirefringent Banding in Thin Isotactic Polystyrene Thin Films," Macromolecules, vol. 37, pp. 9283-9286, 2004.
[59] Y. Wang, C.-M. Chan, L. Li, and K.-M. Ng, "Concentric-Ringed Structures in Polymer Thin Films," Langmuir, vol. 22, pp. 7384-7390, 2006.
[60] C. Luo, W. Huang, H. Wang, and Y. Han, "Formation of Nonextinct Ring-banded Textures and Multistacked Lamella of Tetra-aniline-block-poly(L-lactide) Rod-coil Diblock Oligomer Films Induced by Solvent Vapor Treatment," The Journal of Chemical Physics, vol. 127, pp. 244903-11, 2007.
[61] B. Lotz and S. Z. D. Cheng, "A Critical Assessment of Unbalanced Surface Stresses as the Mechanical Origin of Twisting and Scrolling of Polymer Crystals," Polymer, vol. 46, pp. 577-610, 2005.
[62] C. Nakafuku and M. Sakoda, "Melting and Crystallization of Poly(L-lactic acid) and Poly(ethylene oxide) Binary Mixture," Polymer Journal, vol. 25, pp. 909-917, 1993.
[63] J. Xu, B.-H. Guo, J.-J. Zhou, L. Li, J. Wu, and M. Kowalczuk, "Observation of Banded Spherulites in Pure Poly(l-lactide) and Its Miscible Blends with Amorphous Polymers," Polymer, vol. 46, pp. 9176-9185, 2005.
[64] R. Vasanthakumari and A. J. Pennings, "Crystallization Kinetics of Poly(l-lactic acid)," Polymer, vol. 24, pp. 175-178, 1983.
[65] E. Blümm and A. J. Owen, "Miscibility, Crystallization and Melting of Poly(3-hydroxybutyrate)/Poly(l-lactide) Blends," Polymer, vol. 36, pp. 4077-4081, 1995.
[66] J. Chen and D. Yang, "Nature of the Ring-Banded Spherulites in Blends of Aromatic Poly(ether ketone)s," Macromolecular Rapid Communications, vol. 25, pp. 1425-1428, 2004.
[67] Z. Wang, Y. Li, J. Yang, Q. Gou, Y. Wu, X. Wu, P. Liu, and Q. Gu, "Twisting of Lamellar Crystals in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Ring-Banded Spherulites," Macromolecules, vol. 43, pp. 4441-4444, 2010.
[68] J. Li, Y. Li, J. Zhou, J. Yang, Z. Jiang, P. Chen, Y. Wang, Q. Gu, and Z. Wang, "Increasing Lamellar Twisting Frequency with Poly(lactic acid) Segments Incorporation in Poly(trimethylene terephthalate) Ring-Banded Spherulites," Macromolecules, vol. 44, pp. 2918-2925, 2011.
[69] W.-K. Lee, J.-K. Lee, and C.-S. Ha, "Growth of monolayered poly(L-lactide) lamellar crystals on a substrate," Macromolecular Research, vol. 11, pp. 511-513, 2003.
[70] Y. Kikkawa, H. Abe, T. Iwata, Y. Inoue, and Y. Doi, "Crystallization, Stability, and Enzymatic Degradation of Poly(l-lactide) Thin Film," Biomacromolecules, vol. 3, pp. 350-356, 2002.
[71] B. Kalb and A. J. Pennings, "General Crystallization Behaviour of Poly(l-lactic acid)," Polymer, vol. 21, pp. 607-612, 1980.
[72] T. Iwata and Y. Doi, "Morphology and Enzymatic Degradation of Poly(l-lactic acid) Single Crystals," Macromolecules, vol. 31, pp. 2461-2467, 1998.
[73] W.-K. Lee and T. Iwata, "Morphological Study on Thermal Treatment and Degradation Behaviors of Solution-Grown Poly(l-lactide) Single Crystals," Ultramicroscopy, vol. 108, pp. 1054-1057, 2008.
[74] D. Maillard and R. E. Prud’homme, "The Crystallization of Ultrathin Films of Polylactides — Morphologies and transitions," Canadian Journal of Chemistry, vol. 86, pp. 556-563, 2008.
[75] F. Su, T. Iwata, K. Sudesh, and Y. Doi, "Electron and X-ray Diffraction Dtudy on Poly(4-hydroxybutyrate)," Polymer, vol. 42, pp. 8915-8918, 2001.
[76] T. Iwata and Y. Doi, "Morphology and Enzymatic Degradation of Poly(ϵ-caprolactone) Single Crystals: Does a Polymer Single Crystal Consist of Micro-crystals?," Polymer International, vol. 51, pp. 852-858, 2002.
[77] E. Núñez and U. W. Gedde, "Single Crystal Morphology of Star-Branched Polyesters with Crystallisable Poly(ε-caprolactone) Arms," Polymer, vol. 46, pp. 5992-6000, 2005.
[78] J. Sun, X. Chen, C. He, and X. Jing, "Morphology and Structure of Single Crystals of Poly(ethylene glycol)−Poly(ε-caprolactone) Diblock Copolymers," Macromolecules, vol. 39, pp. 3717-3719, 2006.
[79] T. Iwata, Y. Doi, K. Isono, and Y. Yoshida, "Morphology and Enzymatic Degradation of Solution-Grown Single Crystals of Poly(ethylene succinate)," Macromolecules, vol. 34, pp. 7343-7348, 2001.
[80] C. Alemán, B. Lotz, and J. Puiggali, "Crystal Structure of the α-Form of Poly(l-lactide)," Macromolecules, vol. 34, pp. 4795-4801, 2001.
[81] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, "Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy," Macromolecules, vol. 38, pp. 8012-8021, 2005.
[82] Y.-W. Chiang, R.-M. Ho, E. L. Thomas, C. Burger, and B. S. Hsiao, "A Spring-Like Behavior of Chiral Block Copolymer with Helical Nanostructure Driven by Crystallization," Advanced Functional Materials, vol. 19, pp. 448-459, 2009.
[83] J. Yang, T. Zhao, Y. Zhou, L. Liu, G. Li, E. Zhou, and X. Chen, "Single Crystals of the Poly(l-lactide) Block and the Poly(ethylene glycol) Block in Poly(l-lactide)−poly(ethylene glycol) Diblock Copolymer," Macromolecules, vol. 40, pp. 2791-2797, 2007.
[84] S. Huang, S. Jiang, L. An, and X. Chen, "Crystallization and Morphology of Poly(ethylene oxide-b-lactide) Crystalline–Crystalline Diblock Copolymers," Journal of Polymer Science Part B: Polymer Physics, vol. 46, pp. 1400-1411, 2008.
[85] S. Huang, S. Jiang, X. Chen, and L. An, "Dendritic Superstructures and Structure Transitions of Asymmetric Poly(l-lactide-b-ethylene oxide) Diblock Copolymer Thin Films," Langmuir, vol. 25, pp. 13125-13132, 2009.
[86] R. M. Horn, "Tethered Polymer Chains on Single Crystal Surfaces," Ph.D., Graduate Faculty, University of Akron, Akron, OH, August, 2009.
[87] H. Xiong, J. X. Zheng, R. M. Van Horn, K.-U. Jeong, R. P. Quirk, B. Lotz, E. L. Thomas, W. J. Brittain, and S. Z. D. Cheng, "A New Approach in the Study of Tethered Diblock Copolymer Surface Morphology and Its Tethering Density Dependence," Polymer, vol. 48, pp. 3732-3738, 2007.
[88] M.-S. Hsiao, J. X. Zheng, S. Leng, R. M. Van Horn, R. P. Quirk, E. L. Thomas, H.-L. Chen, B. S. Hsiao, L. Rong, B. Lotz, and S. Z. D. Cheng, "Crystal Orientation Change and Its Origin in One-Dimensional Nanoconfinement Constructed by Polystyrene-block-poly(ethylene oxide) Single Crystal Mats," Macromolecules, vol. 41, pp. 8114-8123, 2008.
[89] D. Snétivy and G. J. Vancso, "Atomic Force Microscopy of Polymer Crystals: 1. Chain Fold Domains in Poly(ethylene oxide) Lamellae," Polymer, vol. 33, pp. 432-433, 1992.
[90] I. H. Huang, L. Chang, and E. M. Woo, "Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate)," Macromolecular Chemistry and Physics, vol. 212, pp. 1155-1164, 2011.
[91] J. F. J. Padden and H. D. Keith, "Spherulitic Crystallization in Polypropylene," Journal of Applied Physics, vol. 30, pp. 1479-1484, 1959.
[92] D. R. Norton and A. Keller, "The spherulitic and Lamellar Morphology of Melt-Crystallized Isotactic Polypropylene," Polymer, vol. 26, pp. 704-716, 1985.
[93] H. D. Keith, J. F. J. Padden, N. M. Walter, and H. W. Wyckoff, "Evidence for a Second Crystal Form of Polypropylene," Journal of Applied Physics, vol. 30, pp. 1485-1488, 1959.
[94] A. T. Jones, J. M. Aizlewood, and D. R. Beckett, "Crystalline Forms of Isotactic Polypropylene," Die Makromolekulare Chemie, vol. 75, pp. 134-158, 1964.
[95] A. Turner-Jones and A. J. Cobbold, "The β Crystalline Form of Isotactic Polypropylene," Journal of Polymer Science Part B: Polymer Letters, vol. 6, pp. 539-546, 1968.
[96] F. L. Binsbergen and B. G. M. de Lange, "Morphology of Polypropylene Crystallized from the Melt," Polymer, vol. 9, pp. 23-40, 1968.
[97] J. Varga and G. Ehrenstein, "High-temperature Hedritic Crystallization of the β-modification of Isotactic Polypropylene," Colloid & Polymer Science, vol. 275, pp. 511-519, 1997.
[98] Y.-F. Chen, E. M. Woo, and S.-H. Li, "Dual Types of Spherulites in Poly(octamethylene terephthalate) Confined in Thin-Film Growth," Langmuir, vol. 24, pp. 11880-11888, 2008.
[99] E. M. Woo and Y.-F. Chen, "Single- and Double-ring Spherulites in Poly(nonamethylene terephthalate)," Polymer, vol. 50, pp. 4706-4717, 2009.
[100] Y.-F. Chen and E. M. Woo, "Annular Multi-Shelled Spherulites in Interiors of Bulk-Form Poly(nonamethylene terephthalate)," Macromolecular Rapid Communications, vol. 30, pp. 1911-1916, 2009.
[101] E. M. Woo, S. Nurkhamidah, and Y.-F. Chen, "Surface and Iinterior Views on Origins of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate)," Physical Chemistry Chemical Physics, vol. 13, pp. 17841-17851, 2011.
[102] E. M. Woo and S. Nurkhamidah, "Surface Nanopatterns of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate) Thin Films," The Journal of Physical Chemistry B, vol. 116, pp. 5071-5079, 2012.
[103] K. C. Yen, E. M. Woo, and K. Tashiro, "Microscopic Fourier Transform Infrared Characterization on Two Types of Spherulite with Polymorphic Crystals in Poly(heptamethylene terephthalate)," Macromolecular Rapid Communications, vol. 31, pp. 1343-1347, 2010.
[104] K. C. Yen, E. M. Woo, and K. Tashiro, "Six Types of Spherulite Morphologies with Polymorphic Crystals in Poly(heptamethylene terephthalate)," Polymer, vol. 51, pp. 5592-5603, 2010.
[105] D. Braun, M. Jacobs, and G. P. Hellmann, "On the Morphology of Poly(vinylidene fluoride) Crystals in Blends," Polymer, vol. 35, pp. 706-717, 1994.
[106] K. Cramer, M. F. S. Lima, S. N. Magonov, E. H. Hellmann, M. Jacobs, and G. P. Hellmann, "Atomic Force Microscopy on Tree-like Crystals in Polyvinylidene Fluoride Blends," Journal of Materials Science, vol. 33, pp. 2305-2312, 1998.
[107] H. D. Keith and J. F. J. Padden, "A Phenomenological Theory of Spherulitic Crystallization," Journal of Applied Physics, vol. 34, pp. 2409-2421, 1963.
[108] H. D. Keith and J. F. J. Padden, "Spherulitic Crystallization from the Melt. I. Fractionation and Impurity Segregation and Their Influence on Crystalline Morphology," Journal of Applied Physics, vol. 35, pp. 1270-1285, 1964.
[109] K. Kawashima, R. Kawano, T. Miyagi, S. Umemoto, and N. Okui, "Morphological Changes in Flat-on and Edge-on Lamellae of Poly(Ethylene Succinate) Crystallized from Molten Thin Films," Journal of Macromolecular Science, Part B, vol. 42, pp. 889-899, 2003.
[110] Y. S. Sun and E. M. Woo, "Correlation Between Thermal Behavior and Crystalline Morphology in β-Form Syndiotactic Polystyrene," Macromolecular Chemistry and Physics, vol. 202, pp. 1557-1568, 2001.
[111] H.-M. Ye, J. Xu, B.-H. Guo, and T. Iwata, "Left- or Right-Handed Lamellar Twists in Poly[(R)-3-hydroxyvalerate] Banded Spherulite: Dependence on Growth Axis," Macromolecules, vol. 42, pp. 694-701, 2008.
[112] S. Nurkhamidah, E. Woo, I. H. Huang, and C. Su, "Phase Behavior and Crystal Morphology in Poly(ethylene succinate) Biodegradably Modified with Tannin," Colloid & Polymer Science, vol. 289, pp. 1563-1578, 2011.
[113] L. Chang, Y.-H. Chou, and E. Woo, "Effects of Amorphous Poly(vinyl acetate) on Crystalline Morphology of Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)," Colloid & Polymer Science, vol. 289, pp. 199-211, 2011.
[114] A. S. Vaughan, "On Morphology and Polymer Blends: Polystyrene and Polyethylene," Polymer, vol. 33, pp. 2513-2521, 1992.
[115] L. Zhang, S. H. Goh, and S. Y. Lee, "Miscibility and Crystallization Behaviour of Poly(l-lactide)/Poly(p-vinylphenol) Blends," Polymer, vol. 39, pp. 4841-4847, 1998.
[116] E. Meaurio, E. Zuza, and J.-R. Sarasua, "Miscibility and Specific Interactions in Blends of Poly(l-Lactide) with Poly(Vinylphenol)," Macromolecules, vol. 38, pp. 1207-1215, 2005.
[117] T. Shirahase, Y. Komatsu, H. Marubayashi, Y. Tominaga, S. Asai, and M. Sumita, "Miscibility and Hydrolytic Degradation in Alkaline Solution of Poly(L-lactide) and Poly(p-vinyl phenol) Blends," Polymer Degradation and Stability, vol. 92, pp. 1626-1631, 2007.
[118] T. G. Fox, "Influence of Diluent and Copolymer Composition on the Glass Transition Temperature of a Polymer System," Bulletin of the American Physical Society, vol. 1, p. 123, 1956.
[119] M. Gordon and J. S. Taylor, "Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. i. Non-Crystalline Copolymers," Journal of Applied Chemistry, vol. 2, pp. 493-500, 1952.
[120] P. R. Couchman, "Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends," Macromolecules, vol. 11, pp. 1156-1161, 1978.
[121] P. R. Couchman and F. E. Karasz, "A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures," Macromolecules, vol. 11, pp. 117-119, 1978.
[122] P. R. Couchman, "Composition Variation of Glass-Transition Temperatures. 7. Copolymers," Macromolecules, vol. 15, pp. 770-773, 1982.
[123] T. K. Kwei, "The Effect of Hydrogen Bonding on the Glass Transition Temperatures of Polymer Mixtures," Journal of Polymer Science: Polymer Letters Edition, vol. 22, pp. 307-313, 1984.
[124] G. Braun and A. J. Kovacs, "Variations in the Glass Transition Temperature of Binary Systems of Statistical Distribution. In: Prins JA, editor. Physiscs of Non-crystalline Solids," Proceedings of the International Conference, vol. 1964, pp. 303-318, 1965.
[125] L. H. Sperling, Introduction to Physical Polymer Science, Third ed. Canada: John Wiley & Sons, Inc., 2001.
[126] A. J. Kovacs, J. A. Manson, and D. Levy, Kolloid Z., vol. 214, p. 1, 1966.
[127] J. D. Hoffman, G. T. Davis, and J. I. Lauritzen Jr., Treatise on Solid State Chemistry, Crystalline and Noncrystalline Solids, N. B. Hannay ed. vol. 3. New York: Plenum, 1976.
[128] P. J. Flory, "On the Morphology of the Crystalline State in Polymers," Journal of the American Chemical Society, vol. 84, pp. 2857-2867, 1962.
[129] V. Ratta, "Crystallization, Morphology, Thermal Stability and Adhesive Properties of Novel High Performance Semicrystalline Polyimides," Ph.D., Chemical Engineering, Virginia Tech., United States, 1999.
[130] D. C. Bassett, A. Keller, and S. Mitsuhashi, "New Features in Polymer Crystal Growth from Concentrated Solutions," Journal of Polymer Science Part A: General Papers, vol. 1, pp. 763-788, 1963.
[131] P. H. Geil, Growth and Perfection of Crystals, Doremus, R. H., Roberts, B. W., and Turnbull, D. eds. ed. New York: Wiley, 1958.
[132] H. D. Keith, "On the Relation between Different Morphological Forms in High Polymers," Journal of Polymer Science Part A: General Papers, vol. 2, pp. 4339-4360, 1964.
[133] F. Khoury and Passaglia, Treatise on Solid State Chemistry, Crystalline and Noncrystalline Solids, N. B. Hannay ed. vol. 3. New York: Plenum, 1976.
[134] J. G. Delly, Essentials of Polarized Light Microscopy, Fifth ed. Westmont, Illinois: College of Microscopy, 2008.
[135] E. Murayama, "Optical Properties of Ringed Spherulites," ed. Japan, 2002.
[136] J. M. Marentette and G. R. Brown, "Polymer Spherulites: I. Birefringence and Morphology," Journal of Chemical Education, vol. 70, p. 435, 1993.
[137] S.-h. Lee, M. S. Jhon, and H. Eyring, "Significant Structure Theory Applied to Phase Separation," Proceedings of the National Academy of Sciences, vol. 74, pp. 10-12, 1977.
[138] L. M. Robeson, Polymer Blends: A Comprehensive Review. Munich: Hanser, 2007.
[139] S. Yamazaki, M. Hikosaka, A. Toda, I. Wataoka, and F. Gu, "Role of Entanglement in Nucleation and ‘Melt Relaxation’ of Polyethylene," Polymer, vol. 43, pp. 6585-6593, 2002.
[140] S. Yamazaki, F. Gu, K. Watanabe, K. Okada, A. Toda, and M. Hikosaka, "Two-Step Formation of Entanglement from Disentangled Polymer Melt Detected by Using Nucleation Rate," Polymer, vol. 47, pp. 6422-6428, 2006.
[141] A. Peacock and A. Calhoun, Polymer Chemistry: Properties and Applications, 1st ed. Cincinnati, OH: Hanser Gardner Publications, 2006.
[142] K. L. Singfield, R. A. Chisholm, and T. L. King, "A Physical Chemistry Experiment in Polymer Crystallization Kinetics," Journal of Chemical Education, vol. 89, pp. 159-162, 2011.
[143] J. Yang, D. W. Li, Y. K. Lin, X. L. Wang, F. Tian, and Z. Wang, "Formation of a Bicontinuous Structure Membrane of Polyvinylidene Fluoride in Diphenyl Ketone Diluent Via Thermally Induced Phase Separation," Journal of Applied Polymer Science, vol. 110, pp. 341-347, 2008.
[144] J. Yang, X.-L. Wang, Y. Tian, Y. Lin, and F. Tian, "Morphologies and Crystalline Forms of Polyvinylidene Fluoride Membranes Prepared in Different Diluents by Thermally Induced Phase separation," Journal of Polymer Science Part B: Polymer Physics, vol. 48, pp. 2468-2475, 2010.
[145] S. V. Madihally and H. W. T. Matthew, "Porous Chitosan Scaffolds for Tissue Engineering," Biomaterials, vol. 20, pp. 1133-1142, 1999.
[146] D. R. Lloyd, K. E. Kinzer, and H. S. Tseng, "Microporous Membrane Formation Via Thermally Induced Phase Separation. I. Solid-Liquid Phase Separation," Journal of Membrane Science, vol. 52, pp. 239-261, 1990.
[147] Y. S. Nam and T. G. Park, "Porous Biodegradable Polymeric Scaffolds prepared by thermally induced phase separation," Journal of Biomedical Materials Research, vol. 47, pp. 8-17, 1999.
[148] T. Tanaka, T. Tsuchiya, H. Takahashi, M. Taniguchi, H. Ohara, and D. R. Lloyd, "Formation of Biodegradable Polyesters Membranes via Thermally Induced Phase Separation," JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 39, pp. 144-153, 2006.
[149] Y. Goh and C. Ooi, "Fabrication and Characterization of Porous Poly(L-lactide) Scaffolds Using Solid–Liquid Phase Separation," Journal of Materials Science: Materials in Medicine, vol. 19, pp. 2445-2452, 2008.
[150] L. Budyanto, Y. Goh, and C. Ooi, "Fabrication of Porous Poly(L-lactide) (PLLA) Scaffolds for Tissue Engineering Using Liquid–Liquid Phase Separation and Freeze Extraction," Journal of Materials Science: Materials in Medicine, vol. 20, pp. 105-111, 2009.
[151] T. Tanaka, T. Tsuchiya, H. Takahashi, M. Taniguchi, and D. R. Lloyd, "Microfiltration Membrane of Polymer Blend of Poly(l-lactic acid) and Poly(ε-caprolactone)," Desalination, vol. 193, pp. 367-374, 2006.
[152] M. C. Wu and E. M. Woo, "Effects of α-form or β-form Nuclei on Polymorphic Crystalline Morphology of Poly(butylene adipate)," Polymer International, vol. 54, pp. 1681-1688, 2005.
[153] S. Nurkhamidah and E. M. Woo, "Phase Separation and Lamellae Assembly below UCST in Poly(l-lactic acid)/Poly(1,4-butylene adipate) Blend Induced by Crystallization," Macromolecules, vol. 45, pp. 3094-3103, 2012.
[154] S. Nurkhamidah and E. M. Woo, "Phase-Separation-Induced Single-Crystal Morphology in Poly(l-lactic acid) Blended with Poly(1,4-butylene adipate) at Specific Composition," The Journal of Physical Chemistry B, vol. 115, pp. 13127-13138, 2011.
[155] P. T. DeLassus and N. F. Whiteman, Polymer Handbook vol. 4. Canada: John Wiley & Sons, Inc., 1999.
[156] D. Li and J. Brisson, "Hydrogen Bonds in Poly(methyl methacrylate)-poly(4-vinyl phenol) Blends: 1. Quantitative Analysis Using FTi.r. Spectroscopy," Polymer, vol. 39, pp. 793-800, 1998.
[157] H. Abe, Y. Kikkawa, Y. Inoue, and Y. Doi, "Morphological and Kinetic Analyses of Regime Transition for Poly[(S)-lactide] Crystal Growth," Biomacromolecules, vol. 2, pp. 1007-1014, 2001.