簡易檢索 / 詳目顯示

研究生: 侯博元
Hou, Bo-yean
論文名稱: 摻添電洞後的釹基錳化合物Nd1-xNaxMnO3得磁性和電性
Magnetic and electric transport properties of Nd1-xNaxMnO3
指導教授: 田聰
Tien, Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 磁性巨磁阻電荷有序
外文關鍵詞: Colossal magnetoresistance, Charge ordering
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究了 Nd1-xNaxMnO3 (x = 0,0.1,0.167,0.25)的磁性和電性。
    在x = 0的樣本中,觀測到負的淨磁強度(magnetization),
    這是非常有趣的結果。其他三個樣本,則顯現鐵磁性(FM)絕緣體的行為,同時也觀察到內在的不同性質的磁性特徵:在130 kOe的磁場下,
    x = 0.1 的樣本展示出可觀的磁阻。在x = 0.16和x = 0.25的樣本中,當溫度接近250K時,具有電荷成序(charge ordering,CO)轉換。巨磁阻(CMR)效應可經由滲出區了解,同時也和較高磁場中的CO-FM有關。當磁場超過30 kOe時,可以觀測到絕緣性到金屬性,以及隨後在更低溫時,緊接著的金屬性到絕緣性轉換,且伴隨著熱遲滯。

    以固態反應過程調配一系列塊狀複晶的 Nd1-xAgxMnO3 樣本,
    其中的 x 在 0.1 和 0.5 之間。 樣本之結構,磁性和磁阻被(詳細地)研究。X 光繞射圖形顯示當 x = 0.1 時,樣本為單一之鈣鈦礦結構,當 x>0.167 時,樣本由一個鐵磁相的鈣鈦礦結構和兩個非磁性的相,Ag 與 Mn3O4 所組成。 增加 Nd1-xAgxMnO3 中 Ag 的成分,磁阻會增大。和 x = 0.1 的樣本相較,x = 0.5 的樣本明顯具有較大的低磁場磁阻值。增大的磁阻,與自旋極化電子在銀之細粒與具有鈣鈦礦結構顆粒的介面間,與自旋相關的碰撞有關。

    The magnetic and electrical properties of Nd1−xNaxMnO3 (x = 0, 0.1, 0.167, 0.25) are studied. A negative net magnetization is observed in the un-daped sample(x = 0). The other three samples show a ferromagnetic (FM)-insulator behavior, and intrinsic inhomogeneous magnetic characteristics are observed. Under a field of 130 kOe, the sample with x = 0.1 exhibits a sizable magnetoresistance (MR). For the samples with x = 0.167 and 0.25, there are charge ordering (CO) transitions near 250 K. The colossal magnetoresistance (CMR) effect can be understood under a percolative regime and is related to the CO-FM transition in a larger magnetic field. When the applied field is more than 30 kOe, a field-induced insulator–metal and a following metal–insulator transition at a lower temperature are observed, accompanied by a thermal hysteresis.

    A series of bulk polycrystalline Nd1-xAgxMnO3 samples were prepared by conventional solid-state reaction processing, for with x between 0.1 and 0.5. The structure, magnetism, and magnetoresistance (MR) of these samples are investigated. The X-ray diffraction patterns show that the x = 0.1 sample exhitits a single perovskite structure, while x 产 0.167, samples consist of a ferromagnetic perovskite phase and two nonmagnetic phases, Ag and Mn3O4. The MR of Nd1-xAgxMnO3 is enhanced by increasing the composition of Ag. Compared with the composition of x = 0.1, the x = 0.5 sample has a significantly larger value in the low-field MR. The enhanced low-field MR is related to the spin dependent scattering of spin-polarized electrons at the interfaces between the perovskite grains and silver granules.

    摘要..........................I ABSTRCT......................II 誌謝........................ IV 目錄..........................V 圖目錄......................VII 第一章 序論..................1 1-1前言....................1 1-2背景與研究動機..........4 第二章 基本理論..............6 2-1 鈣鈦礦基本理論.........6 2-2 磁性基本理論...........7 2-2-1 前言..............7 2-2-2 物質的有序性......9 2-3與龐磁阻有關的磁作用...13 第三章 樣本製作與量測.......28 第四章 實驗結果與討論.......30 4-1 Na1-xNdxMnO3..........30 4-1-1實驗討論...........30 4-1-2實驗結論 ..........37 4-2 Nd1-xAgxMnO3..........39 4-2-1 前言..............39 4-2-2 實驗數據與討論....41 4-2-3 實驗結論..........44 參考文獻.....................55

    [1] S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen,Science 264 (1994) 43.
    [2] Y. Tokura,Y. Tomioka, H.Kuwahara, A. Asamitsu,Y. Moritomo, M. Kasai,J. Appl. Phys. 79 (1996) 5288.
    [3] Y. Tokura, Colossal Magnetoresistance Oxides, Gordon and Breach, NewYork, 2000.
    [4] C. Zener, Phys. Rev. 82 (1951) 403.
    [5] A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74 (1995)5144.
    [6] A.J. Millis, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77 (1996)175.
    [7] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344 (2001) 1.
    [8] A. Moreo, S. Yunoki, E. Dagotto, Science 283 (1999) 2034.
    [9] K. Liu, X.W.Wu, K.H. Ahn, T. Sulchek, C.L. Chien, J.Q. Xiao, Phys. Rev.B 54 (1996) 3007.
    [10] F. Millange, S. de Brion, G. Chouteau, Phys. Rev. B 62 (2000) 5619.
    [11] W. Zhong,W. Chen,W.P. Ding, N. Zhang, A. Hu, Y.W. Du, Q.J. Yan, Eur.Phys. J. B 3 (1998) 169.
    [12] S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, J.J. Du, J. Appl.Phys. 90 (2001) 2943.
    [13] S. Roy, Y.Q. Guo, S. Venkatesh, N. Ali, J. Phys. Condens. Matter 13 (2001) 9547.
    [14] F. Bartolom′e, J. Bartolom′e, J. Campo, Physica B 312 (2002) 769.
    [15] Z.H. Wang, B.G. Shen, N. Tang, J.W. Cai, T.H. Ji, J.G. Jhao, W.S. Zhan,G.C. Che, S.Y. Dai, D.H.L. Ng, J. Appl. Phys. 85 (1999) 5399.
    [16] S. Mukharjee, R. Raganathan, P.S. Anil Kumar, P.A. Joy, Phys. Rev. B 54 (1996) 9267.
    [17] J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina,J. Blasco, J. Garcia, A. del Moral, Z. Arnold, Nature 386 (1997)
    [18] J. Blasco, J. Garcia, J.M. de Teresa, M.R. Ibarra, J. Perez, P.A. Algarabel, C. Marquina, C. Ritter, J. Phys. Condens. Matter 9 (1997)10321.
    [19] A. Arulraj, R. Gundakaram, A. Biswas, N. Gayathri, A.K. Raychaudhuri,C.N.R. Rao, J. Phys. Condens. Matter 10 (1998) 4447.
    [20] C. Yaicle, C. Frontera, J.L. Garc′ıa-Mu˜noz, C. Martin, A. Maignan, G.Andr′e, F. Bour′ee, C. Ritter, I. Margiolaki, Phys. Rev. B 74 (2006) 144406.
    [21] C.N.R. Rao, A. Arulraj, A.K. Cheetham, B. Raveau, J. Phys. Condens. Matter 12 (2000) R83.
    [22] M. Mayr, A. Moreo, J.A. Verg′es, J. Arispe, A. Feiguin, E. Dagotto, Phys. Rev. Lett. 86 (2001) 135.
    [23] R.M. Kuster, J. Singleton, D.A. Keen, R. McGreevy, W. Hayes, Physica B 155 (1989) 362.
    [24]H. Kuwahara, Y. Tomioka, Y. Moritomo, A. Asamitsu, M. Kasai, R. Kumai, Y. Tokura, Science 272 (1996) 80.
    [25] K. Chahara, T. Ohno, M. Kasai, Y. Kozono, Appl. Phys. Lett. 63 (1993) 1990.
    [26] G.C. Xiong, Q. Li, H.L. Ju, R.L. Greene, T. Venkatesan, Appl. Phys. Lett. 66 (1995) 1689.
    [27] J.M.D. Coey, J. Appl. Phys. 85 (1999) 5576.
    [28] M. Ziese, Rep. Prog. Phys. 65 (2002) 143.
    [29] C. Zener, Phys. Rev. 82 (1950) 403.
    [30] A.J. Mills, B.I. Shraiman, R. Mueller, Phys. Rev. Lett. 77 (1996) 175.
    [31] H.Y. Hwang, S.-W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77 (1996) 2041.
    [32] J.M.D. Coey, A.E. Berkowitz, L.L. Balcells, F.F. Putris, A. Barry, Phys. Rev. Lett. 72 (1998) 734.
    [33] S.S. Manoharan, D. Elefant, G. Reiss, J.B. Goodenough, Appl. Phys. Lett. 72 (1998) 984.
    [34] X.W. Li, A. Gupta, G. Xiao, G.Q. Gong, Appl. Phys. Lett. 71 (1997) 1124.
    [35] A. Gupta, G.Q. Gong, G. Xiao, P.R. Duncombe, P. Lecoeur, P. Trouilloud, Y.Y. Wang, V.P. Dravid, J.Z. Sun, Phys. Rev. B 54 (1996) 15629.
    [36] R. Shreekala, M. Rajeswari, S.P. Pai, S.E. Lofland, V. Smolyaninova, K. Ghost, S.B. Ogale, S.M. Bhagat, M.J. Downes, R.L. Greene, R. Ramesh, T. Venkatesan, Appl. Phys. Lett. 74 (1999) 2857.
    [37] R. Bathe, K.P. Adhi, S.I. Patil, G. Marest, B. Hannoyer, S.B. Ogale, Appl. Phys. Lett. 76 (2000) 2104.
    [38]Y.H. Huang, K.F.Huang, F.Luo, L.L.He, Z.M.Wang, C.S.Liao, C.H.Yan, J. Solid State Chem. 174 (2003) 257.
    [39] J. Li, Q. Huang, Z.W. Li, L.P. You, S.Y. Xu, C.K. Ong, J. Appl. Phys. 89 (2001) 7428.
    [40] T. Tao, Q.Q. Cao, K.M. Gu, H.Y. Xu, S.Y. Zhang, Y.W. Du, Appl. Phys. Lett. 77 (2000) 723.
    [41] N. Khare, H.K. Singh, P.K. Siwack, U.P. Mohrail, A.K. Gupta, O.N. Srivastava, J. Phys. D: Appl. Phys. 34 (2001) 673.
    [42] J. Wu, S.Y. Zhang, Chin. Phys. Lett. 21 (2004) 382.
    [43] L. Pi, X.J. Xiao, Y.H. Zhang, Phys. Rev. B 62 (2000) 5667.
    [44] X. M. Liu, X.J. Xiao, Y.H. Zhang, Phys. Rev. B 62 (2000) 15112.
    [45] Q. Zhan, R. Yu, L.L. He, D.X. Li, J. Li, C.K. Ong, J. Mater. Res. 17 (2002) 2712.
    [46] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, D. Rao, A. Starr, S. Zhang, A. Hutten, G. Thomas, J. Appl. Phys. 73 (1993) 5320.
    [47] C.L. Chien, J.Q. Xiao, J.S. Jiang, J. Appl. Phys. 73 (1993) 5309.

    下載圖示 校內:立即公開
    校外:2009-06-24公開
    QR CODE