簡易檢索 / 詳目顯示

研究生: 吳志浩
Wu, Chih-hao
論文名稱: InAs其相關物質量子結構之螢光光譜研究
Studies of Quantum Structures of InAs and Related Material by hotoluminescence
指導教授: 田興龍
Tyan, Shing-Long
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 磁光學量子點量子井砷化銦光激發螢光光譜
外文關鍵詞: magneto-optics, quantum well, quantum dot, InAs, photoluminescence
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文分成兩部分:不同溫度下成長極薄InGaAs/GaAs(100)量子井的磁光學研究,及以光激發螢光光譜研究極小InAs/GaAs(100)量子點的量子態。

      不同溫度下成長的單層極薄量子井結構,在最大強度至15T,磁場方向分別平行(B||)與垂直(B⊥)樣品的成長方向下,測量其光激發螢光光譜以進行研究。維度和有效直徑由低磁場中的反磁位移得之。不同溫度下成長的量子井其維度大致相同,為0.3,而在B||下得到其有效直徑也幾乎一致。高溫成長的量子井在B||得到的有效直徑大於在B⊥得到的有效直徑,而激子侷域化則使得低溫成長的量子井出現相反的結果。B⊥下反磁位移對磁場強度的關係圖在4T附近出現尖端,而高磁場下的反磁位移與B4/3成正比,並可由有效井寬模型得到良好解釋。

      以變激發光強度與變溫的光激發螢光光譜研究基底小於10nm的InAs/GaAs量子點之量子態。由螢光光譜基態躍遷能量所得到的量子點基底大小與原子力顯微鏡結果相符。由變激發光強度光激發螢光光譜我們證明量子點基底小於7.3nm時只存在基態的電子態與電洞態,而基底約8.7nm的量子點則有一個激發態的電洞態。測量所得基態與激發態的電洞能階差符合理論計算值。在變溫光激發螢光光譜中,高於臨界溫度時尖峰位置呈現快速紅位移。在小量子點與大量子點的紅位移率分別為Varshni定律的2.8與2.5倍。較強的穿隧效應可以解釋快速紅位移現象。另外,螢光光譜的半高寬隨著溫度增加呈現V字型變化,則可由穿隧與電子-電洞散射兩種效應得到良好解釋。

     This dissertation consists of two parts :Studies of ultrathin InGaAs quantum wells grown at different temperatures by magneto-photoluminescence ;Investigation of quantum states in ultra small InAs/GaAs quantum dots by photoluminescence .

     The ultrathin single-quantum-well (QW) structures grown at different temperatures are studied using magneto-photoluminescence in magnetic fields of up to 15 T both parallel B|| and perpendicular B⊥ to the growth axis .The dimensionalities and effective diameters are deduced from the low field diamagnetic shift. The dimensionalities are approximately the same ,0.3 ,and the effective diameters obtained in B|| are almost the same for the QWs grown at different temperatures .The effective diameter measured in B⊥ is larger than that in B|| for the QW grown at high temperature while it becomes smaller than that in B|| for the QW grown at the lowest temperature due to the exciton localization .The anomalous diamagnetic shift shows a cusp approximately in 4T in B⊥,and the high-field diamagnetic shift can be well-described as B4/3-dependence based on the effective width well model .

     The quantum states of InAs/GaAs quantum dots (QDs) with a baselength of less than 10 nm are studied by the excitation- and temperature-dependent photoluminescence (PL) .The baselength of the QDs ,calculated by the PL ground state transition energy in agreement with the result of atomic force microscopy measurements .By means of the excitation-dependent PL ,we demonstrate that only the ground electron and hole states exist when the baselength of the QDs is smaller than about 7.3 nm ,whereas the larger dots with a baselength of about 8.7 nm will give rise to one excited hole state .The measured energy separation between the ground and the excited hole states is in good agreement with the theoretical calculation .The transition energy in temperature-dependent PL spectra shows a rapid redshift as the temperature is higher than the critical temperature .The redshift rate is about 2.8 and 2.5 times larger than the values calculated by Varshni's law for small and large dots respectively .The higher redshift rate can be explained by the stronger tunneling effect .In addition ,the PL linewidths show a V-shape dependence with the temperature .This behavior could be well described as a tunneling and electron- phonon scattering effect .

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 1. 前言 1 2. 實驗裝置 6 2.1光激發螢光光譜測量 6 2.2變激發強度光激發螢光光譜測量系統 8 2.3變溫光激發螢光光譜測量系統 10 2.4螺旋超導線圈磁場系統(Oxford Instruments) 12 3. 不同溫度下成長極薄InGaAs/GaAs(100)量子井的磁光學研究 14 3.1樣品結構與實驗流程 14 3.2 k.p theory 16 3.3反磁位移 20 3.4 Effective Well Width Model 24 3.5結果與討論 28 3.6結論 55 4. 以光激發螢光光譜研究極小InAs/GaAs(100)量子點的量子態 56 4.1樣品結構與實驗流程 56 4.2量子點之電子態 60 4.3結果與討論 64 4.4結論 79 5.總結 80 參考文獻 82

    [1]J. Birnbaum and R.S. Williams, Physics Today, January 2000, p.38.
    [2]G. Yusa and H. Sakaki, Electron. Lett, 32, 491 (1996).
    [3]T.H. Wang, H.W. Li, J.M. Zhou, Appl. Phys. Lett. 82, 3092 (2003).
    [4]K. Schmidt, G. Medeiros-Ribeiro, J. Garica, and P. Petroff, Appl. Phys. Lett. 70, 1727 (1997).
    [5]S. Krishna, O. Quasaimeh, P. Bhattacharya, P. MaCann, and K. Namjou, Appl. Phys. Lett. 76, 3355 (2000).
    [6]H. Jiang and J. Singh, Physica E, 2, 720 (1998).
    [7]J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).
    [8]A. Y. Cho, J. Van. Sci. Technol. 8, 531 (1971).
    [9]R. A. Logan and F. K. Reinhart, J. Appl. Phys. 44, 4172 (1973).
    [10]R. Dingle, W. Wiegmann, C. H. Henry, Phys. Rev. L 33, 827 (1974).
    [11]w. Schaffer, M. Lind, S. Kowalczyk, and R. Grant, J. Van. Sci. Technol. B , 688 (1983).
    [12]L. Goldstein, F. Glas, J. Marzin, M. Charassa, and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985).
    [13]S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).
    [14]D. J. Eaglesham and M. Cerullo, Phys. Rev. L 64, 1943 (1990).
    [15]Y. Nabetani, T. Ishikawa, S. Noda, and A. Asaki, J. Appl. Phys. 76, 347 (1994).
    [16]M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
    [17]S. L. Tyan, Y. G. Lin, F. Y. Tsai, C. P. Lee, P. A. Shield, and R. J. Nicholas, Solid State Commun. 117, 649 (2001).
    [18]J. T. Ebner and J. R. Arthur, J. Vac. Sci. Technol. A 5, 2007 (1987).
    [19]B. Elman, E. S. Koteles, P. Melman, C. Jagannath, J. Lee, and D. Dugger, Appl. Phys. Lett. 55, 1659 (1989).
    [20]B. Elman, E. S. Koteles, P. Melman, K. Ostreicher, and C. Sung, J. Appl. Phys. 70, 2634 (1991).
    [21]K. M. Yu and K. T. Chan, Appl. Phys. Lett. 56, 45 (1990).
    [22]John H. Davies : The Physics of Low-Dimensional Semiconductors, (New York, Cambridge University Press, 1998)p.379.
    [23]Claude Cohen-Tannoudji, Bernard Diu, Franck Lalo : Quantum mechanics, translated from the French by Susan Reid Hemley, Nicole Ostrowsky, Dan Ostrowsky(New York, Wiley, 1988)Vol. 1, p.829.
    [24]R. L. Greene, K. K Bajaj, and D. E. Phelps, Phys. Rev. B 29, 1807 (1984).
    [25]G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B 26, 1974 (1982).
    [26]K. J. Nash, M. S. Skolnick, P. A. Claxton, and K. S. Roberts, Phys. Rev. B 39, 10943 (1989).
    [27]M. Altarelli, U. Ekenberg, and A. Fasolino, Phys. Rev. B 32, 5138 (1985).
    [28]B. Vinter, Phys. Rev. B 13, 4447 (1976).
    [29]P. J. Price, J. Vac. Sci. Technol. 19, 599 (1981).
    [30]K. F. Berggren, T. J. Thornton, D. J. Newson, and M. Pepper, Phys. Rev. L 57, 1769 (1986).
    [31]L. D. Landau and E. M. Lifshitz: Quantum Mechanics (Pergamon, Oxford, U. K., 1975), 2nd ed.
    [32]K. T. Chan, M. J. Lightner, G. A. Patterson, and K. M. Yu, Appl. Phys. Lett. 56, 2022 (1990).
    [33]D. C. Radulescu, W. J. Schaff, L. F. Eastman, J. M. Ballingall, G. O. Ramseyer, and S. D. Hersee, J. Vac. Sci. Technol. B 7, 111 (1989).
    [34]S. Chika, H. Kato, M. Nakayama, and N. Sano, Jpn. J. Appl. Phys. 25, 1441 (1986).
    [35]K. Oettinger, Al. L. Efros, and K. Meyer, Phys. Rev. B 52, R5531 (1995).
    [36]M. Bugajski, W. Kuszko, and K. Reginski, Solid State Commun. 60, 669 (1986).
    [37]W. Zhou, D. D. Smith, H. Shen, J. Pamulapati, M. Dutta, A. Chin, and J. Ballingall, Phys. Rev. B 45, 12156 (1992).
    [38]D. C. Rogers, J. Singleton, R. J. Nicholas, C. T. Foxon, and K. Woodbridge, Phys. Rev. B 34, 4002 (1986).
    [39]H. Ko, D-W Kim, W. Kim, D. H. Kim, Y. A. Leem, Y. Kim, J-C Woo, and T. Schmiedel, Jpn. J. Appl. Phys. 37, 51 (1998).
    [40]K. J. Moore, G. D. Duggan, K. Woodbridge and C. Boberts, Phys. Rev. B 41, 1090 (1990).
    [41]H. Q. Hou, Y. Segawa, Y. Aoyagi, S. Namba and J. M. Zhou: Phys. Rev. B 42, 1284 (1990).
    [42]N. J. Pulsford, R. J. Nicholas, R. J. Warburton, G.. Duggan, K. J. Moore, K. Woodbridge, and C. Roberts, Phys. Rev. B 43, 2246 (1991).
    [43]K. J. Nash, M. S. Skolnick, P. A. Claxton, and J. S. Roberts, Phys. Rev. B 39, 5558 (1989).
    [44]D. A. Poole, M. Pepper, K.-F. Berggren, G. Hill, and H. W. Myron, J. Phys. C 15, L21 (1982).
    [45]J.Y. Marzin, J.M. Gerared, A. Izrael, D. Barrier, G. Bastard, Phys. Rev. Lett. 73, 716 (1994).
    [46]M. Rubin et al., Phys. Rev. Lett. 77, 5268 (1996).
    [47]J. Oshinowo, M. Nishioka, S. Ishida and Y. Arakawa, Appl. Phys. Lett. 65, 1421 (1994).
    [48]H. Drexler, D. Leonard, W. Hansen, J. Kotthaus, and P. Petroff, Phys. Rev. Lett. 73, 2252 (1994).
    [49]G. Medeiros-Ribeiro, D. Leonard, and P. Petroff, Appl. Phys. Lett. 66, 1767 (1995).
    [50]M. Fricke, A. Lorke, J. Kotthaus, G. Medeiros-Ribeiro, and P. Petroff, Eur. Phys. Lett. 36, 197 (1996).
    [51]B. Miller,W. Hansen, S. Manus, R. Luyken, A. Lorke, and J. Kotthaus, Phys. Rev. B 56, 6764 (1997).
    [52]R. warburton, C. Durr, K. Karrai, J. Kotthaus, G. Medeiros-Ribeiro, and P. Petroff, Phys. Rev. L 79, 5282 (1997).
    [53]R. warburton et al., Phys. Rev. B 58, 16221 (1998).
    [54]K. schmidt, G. Medeiros-Ribeiro, and P. Petroff, Phys. Rev. B 58, 3597 (1998).
    [55]S. Noda, T. Abe, and M. tamura, Phys. Rev. B 58, 7181 (1998).
    [56]M. A. Cusak, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, R2300 (1996).
    [57]H. Jiang and J. Singh, Appl. Phys. Lett. 71, 3239 (1997).
    [58]C. Pryor, Phys. Rev. B 57, 7190 (1998).
    [59]J. D. Song, Y. M. Park, J. C. Shin, J. G. Lim,Y. J. Park, W. J. Choi, I. K. Han, and J. I. Lee J. Appl. Phys. 96, 4122 (2004).
    [60]K. Matsuda, K. Ikeda, T. Saiki, H. Saito, K. Nishi, Appl. Phys. Lett. 83, 2250 (2003).
    [61]P. G.. Eliseev, I. V. Akimova, Semiconductors 32, 423 (1998).
    [62]D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
    [63]W. H. Jiang, X. L. Ye, H. Z. Xu, D. Ding, J. B. Liang, Z. G. Wang, J. Appl. Phys. 88, 2529 (2000).
    [64]H. Kissel, U. Muller, C. Walther, W. T. Masselink, Yu. I. Mazur, G. G. Tarasov, M. P. Lisitsa, Phys. Rev. B 62, 7213 (2000).
    [65]Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B.Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, L. L. Chang, Phys. Rev. B ,54 11528 (1996).
    [66]H. S. Lee, J. Y. Lee, T. W. Kim, J. Cry. Growth. 258, 256 (2003).

    下載圖示 校內:2006-06-20公開
    校外:2006-06-20公開
    QR CODE