| 研究生: |
林郁凱 Lin, Yu-Kai |
|---|---|
| 論文名稱: |
探討即時動態資訊導入後,通勤者對 MaaS系統之使用意圖 An Investigation on Commuters’ Intention to Use Mobility-as-a-Service (MaaS) Systems With Real-Time Information |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | Mobility as a Service(MaaS) 、即時動態資訊 、行為推理理論 、通勤焦慮 、信任感 、資訊過載 、持續使用意願 |
| 外文關鍵詞: | Mobility as a Service (MaaS), Real-time Information, Behavioral Reasoning Theory, Commuting Anxiety, Trust, Information Overload, Continued Usage Intention |
| 相關次數: | 點閱:2 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來臺灣城際通勤人口持續增加,通勤民眾日益仰賴多元運具整合與即時交通資訊之支援。Mobility as a Service(MaaS)被視為解決跨運具整合問題並提升通勤品質之重要解方,惟現行發展仍面臨多項挑戰,因此,本研究將研究情境設定於運具發生異常狀況時,即時動態資訊輔助使用者進行通勤決策,此情境下,通勤者需於有限時間內快速理解並比較多組替代方案,其對系統所提出建議之合理性與可靠性評估,容易受到資訊過載與決策壓力之影響,進而削弱其對MaaS平台之信任感。基於上述心理歷程,本研究認為焦慮並非單純的附帶情緒反應,而是連結資訊特性與信任判斷之關鍵心理機制,值得進一步加以探討。
因此,本研究以行為推理理論(Behavioral Reasoning Theory, BRT)為理論基礎,建構涵蓋價值觀、正向理由、負向理由、焦慮、信任感與持續使用意願之整合模型,探討即時動態資訊情境下通勤者之心理歷程與行為意圖形成機制。
本研究以北北基桃地區跨縣市通勤者為研究對象,採網路問卷調查方式蒐集333份有效樣本,並運用SPSS與AMOS進行敘述性統計、信效度分析、探索性與驗證性因素分析、結構方程模型(SEM)、中介效果分析與心理特徵分群分析。
研究結果顯示,即時動態資訊所引發之便利性與靈活度對通勤者信任感具有顯著正向影響,而資訊過載與決策壓力則會提高通勤者之焦慮程度;進一步分析發現,焦慮感與信任感呈負向關係,而信任感與持續使用意願呈正向關係。中介效果分析亦顯示,焦慮在負向理由與信任之間扮演完全中介角色。分群分析結果顯示,通勤者可區分為「正向認知-高信任群」與「高焦慮-低信任群」,兩族群在通勤心理特徵與行為反應上呈現顯著差異。
本研究補足既有MaaS文獻較少探討負向心理歷程之不足,並深化BRT於智慧交通與即時資訊情境之應用,研究結果可作為後續MaaS平台在即時資訊呈現、介面設計與服務策略優化之依據,以降低通勤焦慮、強化使用者信任並促進MaaS之永續發展。
This study investigates commuters’ intention to use Mobility as a Service (MaaS) systems under real-time information scenarios. With the continuous growth of intercity commuting in Taiwan and the increasing complexity of multimodal travel, MaaS has been regarded as an important solution for enhancing transportation efficiency and service quality through integrated digital platforms. In situations involving unexpected transportation disruptions, real-time information supports commuters’ decision-making; however, when multiple alternative options must be evaluated within a limited time, such information may also generate information overload and decision-making pressure, leading to commuter anxiety and potentially weakening trust and continued usage intention.
Based on Behavioral Reasoning Theory (BRT), this study constructs an integrated research model incorporating values, positive reasons, negative reasons, anxiety, trust, and continued usage intention. A total of 333 valid questionnaires were collected from intercity commuters in the Taipei–New Taipei–Keelung–Taoyuan metropolitan area. The data were analyzed using SPSS and AMOS through descriptive statistics, reliability and validity analysis, exploratory and confirmatory factor analysis, structural equation modeling (SEM), mediation analysis, and psychological cluster analysis. The results indicate that convenience and flexibility derived from real-time information enhance commuters’ trust, whereas information overload and decision-making pressure increase commuter anxiety, thereby influencing trust and continued usage intention.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
Bawden, D., & Robinson, L. (2008). The dark side of information: Overload, anxiety and other paradoxes and pathologies. Journal of Information Science, 35(2), 180–191.
Caiati, V., Feneri, A.-M., Jittrapirom, P., Rasouli, S., & Timmermans, H. (2020). A stated preference experiment to analyze the effect of MaaS on modal shift and the built environment. Travel Behaviour and Society, 20(2), 22–34.
Chen, C.-F., & Chen, Y.-X. (2022). Investigating the effects of platform and mobility on mobility as a service (MaaS) users’ service experience and behavioral intention: Empirical evidence from MeNGo, Kaohsiung. Transportation, 50(6), 2299–2318.
Cheng, Y.-H. (2010). Exploring passenger anxiety associated with train travel. Transportation, 37(6), 875–896.
Chrystal, K. A. (2019). Social identity, trust, and risk in the sharing economy. Frontiers in Psychology, 10, 736.
Durand, A., Harms, L., Hoogendoorn-Lanser, S., & Zijlstra, T. (2018). Mobility-as-a-Service and changes in travel preferences and travel behaviour: a literature review.
Dybtsyna, E., & Haarstad, H. (2020). Smart city–smart society? Sustainability transformations in the Arctic urban frontier. Sustainable Cities and Society, 53.
Eppler, M. J., & Mengis, J. (2004). The concept of information overload: A review of literature from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, 20(5), 325-344.
Evans, G. W., & Wener, R. E. (2006). Rail commuting duration and passenger stress. Health Psychol, 25(3), 408-412.
Eyal, T., Sagristano, M. D., Trope, Y., Liberman, N., & Chaiken, S. (2009). When values matter: Expressing values in behavioral intentions for the near vs. distant future. J Exp Soc Psychol, 45(1), 35-43.
Fishbein, M. E. (1967). Readings in attitude theory and measurement.
Hair, J. F. (2009). Multivariate data analysis.
Hair, J. F. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). sage.
He, J. (2023). The impact of users’ trust on intention to use the mobile medical platform: Evidence from China. Front Public Health, 11, 1076367.
Henríquez-Jara, B., Arriagada, J., Montenegro, K., Tirachini, A., & Munizaga, M. (2025). The effects of a real-time public transport information app on travel behaviour, traffic levels and the environment. Travel Behaviour and Society, 40, 101024
Hensher, D. A., & Xi, H. (2022). Mobility as a service (MaaS): are effort and seamlessness the keys to MaaS uptake? Transport Reviews, 42(3), 269-272.
Hietanen, S. (2017). Mobility as a Service: The End of Car Ownership? MaaS Global Ltd.
Ho, C. Q., Hensher, D. A., Mulley, C., & Wong, Y. Z. (2018). Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study. Transportation Research Part A: Policy and Practice, 117, 302-318.
Huang, J., Cui, Y., Zhang, L., Tong, W., Shi, Y., & Liu, Z. (2022). An overview of agent‐based models for transport simulation and analysis. Journal of Advanced Transportation, 2022(1), 1252534.
Hunter, J. G., Ulwelling, E., Konishi, M., Michelini, N., Modali, A., Mendoza, A., ... & Reid, T. (2023). The future of mobility-as-a-service: trust transfer across automated mobilities, from road to sidewalk. Frontiers in psychology, 14, 1129583.
Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. Management Science, 1(1), 21–33.
Jittrapirom, P., Caiati, V., Feneri, A.-M., Ebrahimigharehbaghi, S., González, M. J. A., & Narayan, J. (2017). Mobility as a Service: A Critical Review of Definitions, Assessments of Schemes, and Key Challenges. Urban Planning, 2(2), 13-25.
Kantar, P. (2019). Mobility as a Service: Understanding user needs and expectations.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564.
Lipshitz, R., & Strauss, O. (1997). Coping with uncertainty: A naturalistic decision-making analysis. Organizational Behavior and Human Decision Processes, 69(2), 149-163.
Luo, X., Liu, Y., Yu, Y., Tang, J., & Li, W. (2018). Dynamic bus dispatching using multiple types of real-time information. Transportmetrica B: Transport Dynamics, 7(1), 519-545.
Mao, Z., Ettema, D., & Dijst, M. (2016). Commuting trip satisfaction in Beijing: Exploring the influence of multimodal behavior and modal flexibility. Transportation Research Part A: Policy and Practice, 94, 592-603.
Matyas, M., & Kamargianni, M. (2018). The potential of mobility as a service bundles as a mobility management tool. Transportation, 46(5), 1951-1968.
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709-734.
Mokhtarian, P. L., & Chen, C. (2004). TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets. Transportation Research Part A: Policy and Practice, 38(9-10), 643-675.
Morgan, R. M., & Hunt, S. D. (1994). The Commitment-Trust Theory of Relationship Marketing. Journal of Marketing, 58(3),20-38.
Nordhoff, S., Malmsten, V., van Arem, B., Liu, P., & Happee, R. (2021). A structural equation modeling approach for the acceptance of driverless automated shuttles based on constructs from the Unified Theory of Acceptance and Use of Technology and the Diffusion of Innovation Theory. Transportation Research Part F: Traffic Psychology and Behaviour, 78, 58-73.
NANDA (Herdman). (2021). NANDA International Nursing Diagnoses: Definitions and Classification 2021-2023. Thieme.
Novaco, R. W., & Gonzalez, O. I. (2009). Commuting and well-being. Technology and well-being, 3, 174-4.
Ozili, P. K. (2023). Digital finance research and developments around the world: a literature review. International Journal of Business Forecasting and Marketing Intelligence, 8(1), 35-51.
Phillips-Wren, G., & Adya, M. (2020). Decision making under stress: The role of information overload, time pressure, complexity, and uncertainty. Journal of decision systems, 29(sup1), 213-225.
Ponizovskiy, V., Grigoryan, L., Kuhnen, U., & Boehnke, K. (2019). Social Construction of the Value-Behavior Relation. Front Psychol, 10, 934.
Ramboll. (2019). Whimpact: Insights from the pilot on Mobility-as-a-Service.
Rezapour, M., & Richard Ferraro, F. (2021). The impact of commuters’ psychological feelings due to delay on perceived quality of a rail transport. Humanities and Social Sciences Communications, 8(1), 1-8.
Chen, C., Lou, S., & Kaewkitipong, L. (2022). Online social anxiety and mobile instant messaging adoption and continuance usage intention: How does it relate to social, technical, and mobility factors?. Cogent Business & Management, 9(1), 2133632.
Singh, J., & Yadav, A. K. (2024, July). Examining Public Transport Commute Intentions Based on Personal Experiences and Infrastructural Facilities. In International Conference on Transportation System Engineering and Management (pp. 21-28). Singapore: Springer Nature Singapore.
Smith, G., Sochor, J., & Karlsson, I. C. M. (2022). Adopting Mobility-as-a-Service: An empirical analysis of end-users’ experiences. Travel Behaviour and Society, 28, 237-248.
Waung, M., McAuslan, P., & Lakshmanan, S. (2021). Trust and intention to use autonomous vehicles: Manufacturer focus and passenger control. Transportation Research Part F: Traffic Psychology and Behaviour, 80, 328-340.
Westaby, J. D. (2005). Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior. Organizational Behavior and Human Decision Processes, 98(2), 97-120.
Zhou, T. (2011). Examining the critical success factors of mobile website adoption. Online Information Review, 35(4), 636-652.
交通部運輸研究所. (2024). 113年交通運輸使用者行動數據分析報告〔電信信令〕.
王安民. (2024). 臺北市公共自行車與大眾運輸系統之關聯性:追蹤資料之實證分析. 應用經濟論叢, (116), 155-204.
王柏青, 陳元泰, & 劉芳君(2023). 環境知識、價值觀與責任感對環境行為之影響. 環境與管理研究, 24, 15-28.
呂勇輝(2018). 以行為推理理論探討視訊串流技術應用於線上博弈之採用意願〔碩士學位論文,淡江大學〕.
張愛華, 曾忠蕙, & 黃育盈. (2012). 資訊超載對網路購物決策之影響—中介效果之探討. 電子商務學報, 14(3), 411-440.
張瑞琇 & 江睿盈. (2017). 應用科技接受模式探討顧客價值、知覺風險及使用意願之關係-以星巴克的行動支付為例. 休閒事業研究, 15(2), 36-54.
許嘉俊. (2017). 以科技接受模型探討使用者對交通行動服務(MaaS)使用意願之研究〔碩士學位論文, 國立臺灣師範大學〕
審計部. (2024). 中華民國112年營業部分決算審核報告.https://www.audit.gov.tw/
賴俞如. (2019). 消費者對智慧運輸整合服務(MaaS)之採用行為研究-以台北市為例〔碩士論文, 國立臺灣大學〕.
賴柏蓉. (2015). 以行為推理理論探討臺灣高鐵低價商品之旅客運具選擇行為〔碩士論文, 國立臺灣大學〕.
鍾智林 & 張柏鈞. (2024). 後疫情時期民眾之臺北捷運使用意圖與身心健康感知分析. 臺灣土地研究, 26(2), 147-178.
馬培馨. (2021). 探討Facebook資訊品質與社群網路疲勞之關係〔碩士論文, 國立臺灣科技大學〕.
馮正民. (2006). 駕駛人對即時交通資訊之接受意向及其對旅運行為之影響(E94009), 取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫https://doi.org/10.6141/TW-SRDA-E94009-1