| 研究生: |
林玟妏 Lin, Wen-Wen |
|---|---|
| 論文名稱: |
三維軸對稱淚滴型鈍形體之表面流場研究 Investigation of flow field on a 3D axisymmetric teardrop bluff body in the surface vicinity |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 軸對稱鈍形體模型 、表面拓撲 、流動分離 、流場可視化實驗 |
| 外文關鍵詞: | axisymmetric blunt body model, surface topology, flow field separation, visualization experiment |
| 相關次數: | 點閱:115 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究鈍形體(Bluff body)的流場現象一直是流體力學和空氣動力學領域中的重要課題。透過研究鈍形體的流場現象和特性研究,可以了解流體在鈍形體周圍的流動模式、壓力分佈以及阻力生成的機制。這不僅有助於解釋各種實際流體問題,還為工程設計的優化提供了重要依據,有助於預測和控制流體力學效應,例如減少阻力、提高能源效益,以及改善風力發電設施和空氣動力載具的設計。
本研究針對三維軸對稱淚滴型鈍形體模型(Teardrop 40, T40)於低速水槽以及風洞進行流場可視化實驗,模型使用厚度比40% 的淚滴型幾何圖形軸對稱旋轉製成,討論T40模型於水槽低雷諾數下染液法和點墨法視流實驗的渦流結構與表面流動拓撲,以及於風洞較高雷諾數範圍進行油膜流場可視化實驗,觀察雷諾數對於流場分離、再接觸位置造成之影響,並且於風洞進行表面壓力訊號量測實驗,探討流場特徵與表面壓力之間的關係。
於低速水槽流場可視化結果發現,三維軸對稱T40模型於低雷諾數下會於模型兩側x/c = 0.28至0.44之間發生垂直渦旋分離,並出現渦流溢放結構和尾流結構,利用點墨法觀察瞬時表面摩擦線移動軌跡,繪製出低雷諾數1.77×10^4時的表面拓撲圖,且於拓撲圖中標明節點(N)、鞍點(S)和焦點(F)位置。
另外,使用開放式風洞進行油膜可視化實驗,於T40模型x/c = 0.2至0.28位置發現一小尺度的環狀分離泡結構,同時在雷諾數8.73×10^4時,開始於x/c = 0.44位置上觀察到紊流再接觸,此紊流再接觸隨雷諾數增加,具有不同方向角上的位置間歇性。利用平均壓力係數與擾動壓力係數驗證,紊流再接觸位置間歇性現象開始發生的雷諾數與油膜可視化中觀察到相同。
In this study, we focused on the phenomenon of flow over an axisymmetric body of a teardrop shape. This model named T40 is featured with a maximum thickness of 60mm, which is 40% of its chord length, 150mm. For the model at zero angle of attack, dye injection and ink-dot flow visualization experiments were conducted at a Reynolds number of 1.77×104 in a low-speed water channel to observe vortex structures and surface flow topology around the T40 model. Oil film visualization experiments were carried out in a wind tunnel over a Reynolds number range of 7.51×104 to 2.15×105 to observe the effects of Reynolds number on flow separation and reattachment positions. Surface pressure signal measurements were also conducted in the wind tunnel to investigate the relationship between flow characteristics and surface pressure.
[1] U. S. D. S. B. T. F. o. t. N. A. Plane, Report of the Defense Science Board Task Force on the National Aerospace Plane (NASP). Office of the Under Secretary of Defense for Acquisition, 1988.
[2] M. Raffel, C. E. Willert, and J. Kompenhans, Particle image velocimetry: a practical guide. Springer, 1998.
[3] L. PRANDTL, "Motion of Fluids with Very Little Viscosity," NACA Translation No. 452, 1928.
[4] T. Von Karman, "Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1911, pp. 509-517, 1911.
[5] C. WIESELSBERGER, "New Data on The Laws of Fluid Resistance," Physikalische Zeitschrift, vol. 22, pp. 321-328, 1921.
[6] "Airship Aerodynamics Technical Manual." Federal Aviation Administration, Flight Standards Service. (accessed 1941).
[7] P. Joubert, "Some aspects of submarine design. Part 1, Hydrodynamics (U)," Fishermans Bend, Vic. : DSTO Platforms Sciences Laboratory, 2004.
[8] M. Van Dyke and M. Van Dyke, An album of fluid motion. Parabolic Press Stanford, 1982.
[9] H. U. Meier and H.-P. Kreplin, "Experimental investigation of the boundary layer transition and separation on a body of revolution," Zeitschrift fur Flugwissenschaften und Weltraumforschung, vol. 4, pp. 65-71, 1980.
[10] U. Dallmann, "Topological structures of three-dimensional vortex flow separation," in 16th Fluid and Plasmadynamics Conference, 1983, p. 1735.
[11] K. Wang, H. Zhou, C. Hu, and S. Harrington, "Three-dimensional separated flow structure over prolate spheroids," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 429, no. 1876, pp. 73-90, 1990.
[12] K. Wang, "Separation patterns of boundary layer over an inclined body of revolution," Aiaa Journal, vol. 10, no. 8, pp. 1044-1050, 1972.
[13] K. Wang, "Boundary layer over a blunt body at high incidence with an open-type of separation," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 340, no. 1620, pp. 33-55, 1974.
[14] E. H. Hirschel, J. Cousteix, and W. Kordulla, "Three-dimensional attached viscous flow," Springer, Berlin, Chapter, 2014.
[15] A. Roshko, "Perspectives on bluff body aerodynamics," Journal of Wind Engineering and Industrial Aerodynamics, vol. 49, no. 1-3, pp. 79-100, 1993.
[16] M. GASTER, "The Structure and Behaviour of Laminar Separation Bubbles," ARC R&M, 1967.
[17] Z. Chen, T. Xiao, Y. Wang, and N. Qin, "Laminar separation bubble dynamics and its effects on thin airfoil performance during pitching-up motion," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 235, no. 16, pp. 2479-2492, 2021.
[18] A. R. Lambert and S. Yarusevych, "Characterization of vortex dynamics in a laminar separation bubble," AIAA Journal, vol. 55, no. 8, pp. 2664-2675, 2017.
[19] T. Michelis, S. Yarusevych, and M. Kotsonis, "Response of a laminar separation bubble to impulsive forcing," Journal of Fluid Mechanics, vol. 820, pp. 633-666, 2017.
[20] J. Katz and A. Plotkin, Low-speed aerodynamics. Cambridge university press, 2001.
[21] C. Farell and J. Blessmann, "On critical flow around smooth circular cylinders," Journal of Fluid Mechanics, vol. 136, pp. 375-391, 1983.
[22] R. Basu, "Aerodynamic forces on structures of circular cross-section. Part 1. Model-scale data obtained under two-dimensional conditions in low-turbulence streams," Journal of Wind Engineering and Industrial Aerodynamics, vol. 21, no. 3, pp. 273-294, 1985.
[23] A. Fage, "Experiments on a sphere at critical Reynolds numbers," Aero. Res. Council Gt. Brit., 1936.
[24] E. Achenbach, "Experiments on the flow past spheres at very high Reynolds numbers," Journal of fluid mechanics, vol. 54, no. 3, pp. 565-575, 1972.
[25] S. Taneda, "Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106," Journal of Fluid Mechanics, vol. 85, no. 1, pp. 187-192, 1978.
[26] R. Deshpande, V. Kanti, A. Desai, and S. Mittal, "Intermittency of laminar separation bubble on a sphere during drag crisis," Journal of Fluid Mechanics, vol. 812, pp. 815-840, 2017.
[27] J. Miau, H. Tsai, Y. Lin, J. Tu, C. Fang, and M. Chen, "Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime," Experiments in fluids, vol. 51, pp. 949-967, 2011.
[28] A. Desai and S. Mittal, "Effect of free stream turbulence on the topology of laminar separation bubble on a sphere," Journal of Fluid Mechanics, vol. 948, p. A28, 2022.
[29] I. Tani, "Low-speed flows involving bubble separations," Progress in Aerospace Sciences, vol. 5, pp. 70-103, 1964.
[30] R. Langtry and F. Menter, "Overview of industrial transition modelling in CFX," ANSYS Germany GmbH, ANSYS CFX, 2006.
[31] M. Gaster, The structure and behaviour of laminar separation bubbles. 1967.
[32] O. Marxen and D. S. Henningson, "The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble," Journal of Fluid Mechanics, vol. 671, pp. 1-33, 2011.
[33] T. M. Kirk and S. Yarusevych, "Vortex shedding within laminar separation bubbles forming over an airfoil," Experiments in Fluids, vol. 58, pp. 1-17, 2017.
[34] P. Dong, J.-J. Miau, and A. Zoghlami, "An experimental study about drag crisis phenomenon on teardrop model," Journal of Aeronautics, Astronautics and Aviation, vol. 51, no. 2, pp. 141-157, 2019.
[35] D. SCOBORIA, L. WU, S. LI, and a. J.-J. MIAU, "Experimental investigation of laminar separation bubbles on a series of teardrop cylinders with increasing thickness," presented at the 16th International Symposium on Advanced Science and Technology in Experimental Mechanics,, Hanoi, Vietnam, 2021.
[36] 江皇廷, "應用流場可視化及粒子影像測速技術剖析動態失速流場," 航空太空工程研究所, 國立成功大學, 台南市, 2015.
[37] 陳麗宇, "雷諾數效應對不同機翼幾何配置的渦流結構研究," Institute of aeronautics and astronautics, National Cheng Kung University, Taiwan, 2021.
[38] J. Yu, T.-S. Leu, and J.-J. Miau, "Investigation of reduced frequency and freestream turbulence effects on dynamic stall of a pitching airfoil," Journal of Visualization, vol. 20, pp. 31-44, 2017.
[39] J.-Y. Li, "Improvement on a Blade of a Vertical-Axis Wind Turbine," Institute of aeronautics and astronautics, National Cheng Kung University, Taiwan, 2013.
[40] 李哲語, "垂直軸風力機葉片性能提升之探討," 航空太空工程研究所, 國立成功大學, 台南市, 2013.
[41] 李尚儒, "自行車手於上彎把握姿之尾流結構探討," 2017.
[42] 周牧廷, "翼身融合氣動力外型之渦流結構分析," Institute of aeronautics and astronautics, National Cheng Kung University, Taiwan, 2020.
[43] C. J. Obara, "Sublimating chemical technique for boundary-layer flow visualizationin flight testing," Journal of Aircraft, vol. 25, no. 6, pp. 493-498, 1988.
[44] K. Pearson, "Notes on the history of correlation," Biometrika, vol. 13, no. 1, pp. 25-45, 1920.
[45] 劉文浩, "50˚後掠角三角翼三維流場及噴流後流場觀察," 航空太空工程研究所, 國立成功大學,台南市, 1992.
[46] l. K. M. Serdar, H. Hakan, and M. Turul, Low Reynolds Number Flows and Transition (Low Reynolds Number Aerodynamics and Transition.). InTech, 2012.