簡易檢索 / 詳目顯示

研究生: 烏邁爾
AHMAD, UMAIR
論文名稱: 同倫分析法研究化學反應對鐵磁艾琳鮑威爾流體的影響
Impact of Chemical Reaction on Ferromagnetic Eyring Powell Fluid with Homotopy Analysis Method
指導教授: 周鼎贏
Chou, Dean
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 71
中文關鍵詞: 鐵磁艾林-鮑威爾液體駐點流熱源不均勻/匯黏滯耗散Cattaneo-Christov 熱通量模型兩線電流熱弛豫均相和非均相反應
外文關鍵詞: Cattaneo-Christov Heat Flux Model, Stagnation point flow, Ferromagnetic Eyring-Powell liquid, Non-uniform heat source/sink, Viscous dissipation, Thermal Relaxation, Two-Line Current, Homogeneous and Heterogeneous Reaction
相關次數: 點閱:25下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵磁流體可以在載液中傳遞熱量並穩定微米級鐵磁顆粒的膠體分散體,在醫學和 工程領域具有廣泛的應用。科學家和工程師普遍認為,非牛頓流體比牛頓流體更適合 工業和現實世界的工程應用。由於如此巨大的應用,我們希望研究雙分層和化學反應 對穿過拉伸片的鐵磁艾林-鮑威爾液體的駐點流的綜合影響,以及均質-非均相反應對 鮑威爾-艾林流體鐵磁流動的影響。我們想知道各種特性(包括普朗特數、鐵磁相互 作用、施密特數、居里溫度以及熱和濃度分層)對速度、溫度和濃度的影響。使用 Cattaneo-Christov 熱流模型描述熱傳導,該模型是傅立葉定律的變體。使用相似變換,控制方程式被簡化為耦合非線性常微分方程組,然後使用同質分析方法求解。圖表顯 示了溫度分佈如何受到一系列特徵的影響,包括普朗特數、均質-非均質過程、鐵流體 動力學相互作用和無量綱熱弛豫時間。所獲得的結果證實了文獻中發現的結果,這些 文獻是透過使用表格和圖表進行描述的。這些不同參數的變化可以在未來進一步用於 磁藥物標靶(MDT)等技術的開發。這兩項研究都為複雜的流體動力學現象提供了重 要的見解,突顯了非牛頓鐵磁流體中的熱傳導和質傳。

    Ferrofluids, which can transfer heat and stable colloidal dispersions of micron-sized ferromagnetic particles in a carrier liquid, have vast applications in the field of medicine and engineering. Scientists and engineers generally agree that non-Newtonian fluids are better suited for industrialand real-world engineering applications than Newtonian fluids. Due to such enormous applications we want to examine the combined effects of dual stratification and chemical reaction on stagnation point flow in a ferromagnetic Eyring-Powell liquid across a stretched sheet and the effect of homogeneous-heterogeneous reaction on ferromagnetic flow of Powell-Eyring fluid on a cold flatten plate having dual magnetic dipoles. We want to know the influence of various characteristics including the Prandtl number, ferromagnetic interaction, Schmidt number, Curie temperature, and thermal and concentration stratification on velocity, temperature and concentration. Heat transfer is described using the Cattaneo-Christov heat flow model, which is a variation of Fourier’s law. Using similarity transformations, the governing equations are simplified to a system of coupled nonlinear ordinary differential equations, then solved using the Homotropy analysis approach. Graphs show how the temperature distribution is affected by a range of characteristics, including the Prandtl number, homogeneous-heterogeneous processes, ferrohydrodynamic interaction, and dimensionless thermal relaxation time. The results gained corroborated those found in the literature, which were described through the use of tables and graphs. These variations in different parameters can be used further in future for development of techniques like Magnetic Drug Targeting (MDT). Both investigations provide significant insights into complex fluid dynamics phenomena, highlighting heat and mass transferin non-Newtonian ferrofluids.

    中文摘要 I Abstract II Acknowlegdement IV Table of Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 Chapter 2 Literature Review 7 Chapter 3 Methodology 12 3.1 Source/Sink Effects on Stagnation Point Flow of Ferromagnetic Eyring-Powell Fluids with Chemical Reactions 16 3.1.1 Physical Model 16 3.1.2 Methodology for solution 19 3.1.3 Convergence Analysis 22 3.2 Impact of homogeneous and heterogeneous reaction on flow of Powell-Eyring ferromagnetic fluid on a cold flatten plate embedded with two equal magnetic dipoles 25 3.2.1 Problem Formulation 25 3.2.2 Methodology for Solution 28 3.2.3 Magnetic Potential 30 3.2.4 Homotopic solutions 31 3.2.5 Convergence analysis 32 Chapter 4 Results and Discussions 34 4.1 Single Magnetic Dipole 34 4.2 Double Magnetic Dipole 43 Chapter 5 Conclusions 50 References 52

    1. Christov, C. I. (2009). On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36(4), 481-486.
    2. Ahmad, L., Khan, M., & Khan, W. A. (2017). Numerical investigation of magneto nano particles for unsteady 3D generalized Newtonian liquid flow. The European Physical Journal Plus, 132(9), 373.
    3. Allen, M. P. (1987). DJ Tildesley: Computer simulation of liquids. Clarendon. Barnes, H. A. (1989). Shear-thickening ("Dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. Journal of Rheology, 33(2), 329–366.
    4. Akbari, O. A., Toghraie, D., Karimipour, A., & Ahmadi, G. R. (2017). The effect of velocityanddimensionofsolidnanoparticlesonheattransferinnon-Newtoniannanofluid. Physica E: Low Dimensional Systems and Nanostructures, 86, 68–75.
    5. Alipour, P., Toghraie, D., Karimipour, A., & Hajian, M. (2019). Molecular dynamics simulation of fluid flow passing through a nano channel: Effects of geometry shape of roughness. Journal of Molecular Liquids, 275, 192–203.
    6. Argones-Beltran, P., Chaparro-Gonzalez, F., Pastor-Ferrando, J. P., & Pla-Rubio, A. (2014). An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar thermal power plant investment projects. Energy, 66, 222–238.
    7. Askari, I. B., Sadegh, M. O., & Ameri, M. (2015). Energy management and economics of a trigeneration system considering the effect of solar PV, solar collector and fuel price.Energy for Sustainable Development, 26, 43–55.
    8. Asproulis, N., & Drikakis, D. (2011). Wall-mass effects on hydrodynamic boundary slip.Physical Review E, 84(3), 031504.
    9. Asproulis, N., & Drikakis, D. (2010). Boundary slip dependency on surface stiffness. Physical Review E, 81(6), 061503.
    10. Balootaki, A. A., Karimipour, A., & Toghraie, D. (2018). Nanoscale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside. Physica A: Statistical Mechanics and Its Applications, 508, 681–701.
    11. Ballal, B. Y., & Rivlin, R. S. (1976). Flow of a viscoelastic fluid between eccentric rotating cylinders. In R. S. Rivlin (Ed.), Collected Papers of R. S. Rivlin (pp. 2087–2123).Springer.
    12. Ballal, B. Y., & Rivlin, R. S. (1976). Flow of a viscoelastic fluid between eccentric rotating cylinders. In R. S. Rivlin (Ed.), Collected Papers of R. S. Rivlin (pp. 2087–2123). Springer.
    13. Baby, T.T., &Ramaprabhu, S.(2011). Experimentalinvestigationofthethermaltransport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale, 3(5), 2208–2214.
    14. Bhatti, M. M., & Rashidi, M. M. (2016). Effects of thermal-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 221, 567–573.
    15. Bilal, S., Rehman, K. U., & Malik, M. Y. (2017). Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method. Results in Physics, 7, 690–696. Khan, M. (2017). On Cattaneo–Christov heat flux model for Carreau fluid flow over a slendering sheet. Results in Physics, 7, 310–319.
    16. Buongiorno, J., & Hu, W. (2005, May). Nanofluid coolants for advanced nuclear power plants. In Proceedings of ICAPP (Vol. 5, No. 5705, pp. 15–19).
    17. Sheikholeslami, M., Abelman, S., & Ganji, D. D. (2014). Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. International Journal of Heat and Mass Transfer, 79, 212–222.
    18. Hayat, T., Khan, M. I., Waqas, M., Alsaedi, A., & Yasmeen, T. (2017). Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects. Chinese Journal of Chemical Engineering, 25(3), 257–263.
    19. Buongiorno, J. (2006). Convective transport in nanofluid. Journal of Heat Transfer, 128(3), 240–250.
    20. Cavallaro, F. (2010). Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy, 87(2), 496–503.
    21. Cortell, R. (2012). Heat transfer in a fluid through a porous medium over a permeable stretchingsurfacewiththermalradiationandvariablethermalconductivity. TheCanadian Journal of Chemical Engineering, 90(5), 1347–1355. https://doi.org/10.1002/ cjce.21689
    22. Dogonchi, A. S., & Ganji, D. D. (2016). Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. Journal of Molecular Liquids, 220, 592–603. https://doi.org/10.1016/j.molliq.2016.04.084
    23. Farooq, M., Khan, M. I., Waqas, M., Hayat, T., Alsaedi, A., & Khan, M. I. (2016). MHD stagnationpointflowofviscoelasticnanofluidwithnon-linearradiationeffects. Journalof Molecular Liquids, 221, 1097–1103. https://doi.org/10.1016/j.molliq.2016. 05.053
    24. Sheikholeslami, M., & Ellahi, R. (2015). Three dimensional mesoscopic simulation of magneticfieldeffectonnaturalconvectionofnanofluid. InternationalJournalofHeatand Mass Transfer, 89, 799–808. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.053
    25. Irfan, M., Khan, M., & Khan, W. A. (2019). Impact of non-uniform heat sink/source and convective condition in radiative heat transfer to Oldroyd-B nanofluid: A revised proposed relation. Physics Letters A, 383(4), 376–382. https://doi.org/10.1016/j.physleta.2018.11.046
    26. Thumma, T., & Mishra, S. R. (2020). Effect of nonuniform heat source/sink, and viscous and joule dissipation on 3D Eyring Powell nanofluid flow over a stretching sheet. Journal of Computational Design and Engineering, 7(4), 412–426. https: //doi.org/10.1016/j.jcde.2020.01.003
    27. Neuringer, J. L., & Rosensweig, R. E. (1964). Ferrohydrodynamics. Physics of Fluids, 7(1), 1–14. https://doi.org/10.1063/1.1711246
    28. Andersson, H. I., & Valnes, O. A. (2005). Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mechanica, 178(1-2), 111–123. https: //doi.org/10.1007/s00707-005-0155-3
    29. Yamaguchi, H., Zhang, Z., Shuchi, S., & Shimada, K. (2001). Heat transfer characteristics of magnetic fluid in a partitioned rectangular box. Journal of Magnetism and Magnetic Materials, 232(1-3), 115–119. https://doi.org/10.1016/S0304-8853(01) 00392-X
    30. Zeeshan, A., Majeed, A., & Ellahi, R. (2019). Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. Journal of Molecular Liquids, 276, 746–754. https://doi.org/10.1016/j.molliq.2018.12.018
    31. Vtulkina, E. D., & Elfimova, E. A. (2017). Thermodynamic and magnetic properties of ferrofluids in external uniform magnetic field. Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2017.03.028
    32. Rehman, K. U., Yousaf, M. M., Khan, A. A., Iffat, Z., Mostafa, Z., & Tahir, M. (2017). Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification. The European Physical Journal Plus, 132(550). https://doi.org/10.1140/epjp/ i2017-11550-3
    33. Rehman, K. U., Khan, A. A., Yousaf, M. M., & Hussain, A. (2017). Numerical study of a thermally stratified flow of a tangent hyperbolic fluid induced by a stretching cylindrical surface. The European Physical Journal Plus, 132(389). https://doi.org/10.1140/ epjp/i2017-11539-9
    34. Hayat, T., Waqas, M., Shehzad, S.A., &Alsaedi, A.(2017). Mixedconvectionstagnationpoint flow of Powell-Eyring fluid with Newtonian heating, thermal radiation, and heat generation/absorption. Journal of Aerospace Engineering. https://doi.org/10. 1061/(ASCE)AS.1943-5525.0000679
    35. Hayat, T., Zubair, M., Ayub, M., Waqas, M., & Alsaedi, A. (2020). Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. European Physical Journal Plus. https://doi.org/10.1140/epjp/s13360-020-00821-x
    36. Hayat, T., Zubair, M., Waqas, M., Alsaedi, A., & Ayub, M. (2020). On doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory. Results in Physics. https://doi.org/10.1016/j.rinp.2020.103063
    37. Ramzan, M., Bilal, M., & Chung, J. D. (2017). Radiative flow of Powell-Eyring magnetonanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point. PLoS ONE, 12(2017), e0170790. https://doi.org/10.1371/ journal.pone.0170790
    38. Ur Rehman, K., Malik, M. Y., Salahuddin, T., & Naseer, M. (2016). Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect. AIP Advances, 6(075112). https://doi.org/10. 1063/1.4952715
    39. Bilal, M., & Ashbar, S. (2020). Flow andheat transfer analysis of Eyring-Powell fluidover stratified sheet with mixed convection. Journal of the Egyptian Mathematical Society, 28(40). https://doi.org/10.1016/j.jems.2020.01.004
    40. Vtulkina, E. D., & Elfimova, E. A. (2017). Thermodynamic and magnetic properties of ferrofluids in external uniform magnetic field. Journal of Magnetism and Magnetic Materials, 431, 218–221. https://doi.org/10.1016/j.jmmm.2017.01.067
    41. Zubair, M., Ijaz, M., Abbas, T., & Riaz, A. (2019). Analysis of modified Fourier law in flow of ferromagnetic Powell-Eyring fluid considering two equal magneticdipoles. Canadian Journal of Physics, 97(772–776). https://doi.org/10.1139/cjp-2018-0703
    42. Neuringer, J. L., & Rosensweig, R. E. (1964). Ferrohydrodynamics. Physics of Fluids,7(1927–1937). https://doi.org/10.1063/1.1711422
    43. Andersson, H. I., & Valnes, O. A. (1998). Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mechanica, 128(39–47). https: //doi.org/10.1007/BF01175494
    44. Yamaguchi, H., Zhang, Z., Shuchi, S., &Shimada, K.(2002). Heattransfercharacteristics of magnetic fluid in a partitioned rectangular box. Journal of Magnetism and Magnetic Materials, 252(203–205). https://doi.org/10.1016/S0304-8853(02)00497-3
    45. Zeeshan, A., Majeed, A., & Ellahi, R. (2016). Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. Journal of Molecular Liquids, 215(549–554). https://doi.org/10.1016/j.molliq.2016.01.022
    46. Vtulkina, E. D., & Elfimova, E. A. (2017). Thermodynamic and magnetic properties of ferrofluids in external uniform magnetic field. Journal of Magnetism and Magnetic Materials, 431(218–221). https://doi.org/10.1016/j.jmmm.2017.01.045
    47. Kamali, S., Pouryazdan, M., Ghafari, M., Itou, M., Rahman, M., Stroeve, P., & et al.(2016). Magnetization and stability study of a cobalt-ferrite-based ferrofluid. Journal of Magnetism and Magnetic Materials, 404(143–147). https://doi.org/10.1016/j. jmmm.2016.03.038
    48. Aursand, E., Gjennestad, M. A., Lervåg, K. Y., & Lund, H. (2016). A multi-phase ferrofluidflowmodelwithequationofstateforthermomagneticpumpingandheattransfer. Journal of Magnetism and Magnetic Materials, 402(8–19). https://doi.org/10. 1016/j.jmmm.2015.12.001
    49. Mojumder, S., Rabbi, K. M., Saha, S., Hasan, M., & Saha, S. C. (2016). Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. Journal of Magnetism and Magnetic Materials, 407(412–424). https://doi.org/10.1016/j.jmmm.2016.01.015
    50. Qasim, M., Khan, Z. H., Khan, W. A., & Shah, I. A. (2014). MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux. PLoS ONE, 9(e83930). https://doi.org/10.1371/journal.pone.0083930
    51. Mustafa, I., Javed, T., & Ghaffari, A. (2016). Heat transfer in MHD stagnation point flow of a ferrofluid over a stretchable rotating disk. Journal of Molecular Liquids, 219(526–532). https://doi.org/10.1016/j.molliq.2016.03.059
    52. Khader, M. M., & Megahed, A. M. (2013). Numerical studies for flow and heat transfer of the Powell-Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the Chebyshev finite difference method. Journal of Applied Mechanics and Technical Physics, 54(444–450). https://doi.org/10.1134/S0021894413030144
    53. Eldabe, N. T. M., Sallam, S. N., & Abou-Zeid, M. Y. (2012). Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium. Journal of Egyptian Mathematical Society, 20(139–151). https://doi.org/10.1016/j.joems.2012.09.001
    54. Javed, T., Ali, N., Abbas, Z., & Sajid, M. (2013). Flow of an Eyring-Powell non-Newtonianfluidoverastretchingsheet. ChemicalEngineeringCommunications,200(327–336).https://doi.org/10.1080/00986445.2013.805622
    55. Riaz, A., Nadeem, S., & Ellahi, R. (2015). Effects of the wall properties on unsteady peristaltic flow of an Eyring-Powell fluid in a three-dimensional rectangular duct. International Journal of Biomathematics, 8(1550081). https://doi.org/10.1142/S179352451550081X
    56. Khan, M. I., Kiyani, M. Z., Malik, M. Y., Yasmeen, T., Khan, M. W. A., & Abbas, T. (2016). Numerical investigation of magnetohydrodynamic stagnation point flow with variable properties. Alexandria Engineering Journal. https://doi.org/10.1016/j. aej.2016.04.037
    57. Ellahi, R., Shivanian, E., Abbasbandy, S., & Hayat, T. (2016). Numerical study of magnetohydrodynamicsgeneralizedCouetteflowofEyring-Powellfluidwithheattransfer and slip condition. International Journal of Numerical Methods for Heat and Fluid Flow, 26(1433–1445). https://doi.org/10.1108/HFF-06-2015-0204
    58. Hayat, T., Waqas, M., Shehzad, S.A., &Alsaedi, A.(2016). Mixedconvectionstagnationpoint flow of Powell-Eyring fluid with Newtonian heating, thermal radiation, and heat generation/absorption. Journal of Aerospace Engineering. https://doi.org/10. 1061/(ASCE)AS.1943-5525.0000674
    59. Hayat, T., Zubair, M., Ayub, M., Waqas, M., & Alsaedi, A. (2016). Stagnation point flow towardsnonlinearstretchingsurfacewithCattaneo-Christovheatflux. EuropeanPhysical Journal Plus, 131(355). https://doi.org/10.1140/epjp/i2016-16355-9
    60. Hayat, T., Zubair, M., Waqas, M., Alsaedi, A., & Ayub, M. (2017). On doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory. Results in Physics, 7(99–106). https://doi.org/10.1016/j.rinp.2016.11.017
    61. Fourier, J. B. J. (1822). Théorie analytique de la chaleur. Paris.
    62. Cattaneo, C. (1948). Sulla conduzione del calore. Atti Seminario Matematico e Fisico dell’Università di Modena e Reggio Emilia, 3(83–101).
    63. Christov, C. I. (2009). On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36(481–486). https://doi.org/10.1016/j.mechrescom.2009.02.001
    64. Ciarletta,M.,&Straughan,B.(2010). UniquenessandstructuralstabilityfortheCattaneoChristov equations. Mechanics Research Communications, 37(445–447). https:// doi.org/10.1016/j.mechrescom.2010.04.001
    65. Han, S., Zheng, L., Li, C., & Zhang, X. (2014). Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38(87–93). https://doi.org/10.1016/j.aml.2014.03.017
    66. Hayat, T., Zubair, M., Waqas, M., Alsaedi, A., & Ayub, M. (2017). Importance of chemical reactions in flow of Walter-B liquid subject to non-Fourier flux modeling. Journal of Molecular Liquids, 238(229–235). https://doi.org/10.1016/j.molliq.2017. 04.021
    67. Chaudhary, M. A., & Merkin, J. H. (1995). A simple isothermal model for homogeneousheterogeneous reactions in boundary-layer flow: I equal diffusivities. Fluid Dynamics Research, 16(311–333). https://doi.org/10.1016/0169-5983(95)00014-9
    68. Khan, W. A., & Pop, M. I. (2012). Effects of homogeneous-heterogeneous reactions on the viscoelastic fluid toward a stretching sheet. Journal of Heat Transfer, 134(064506). https://doi.org/10.1115/1.4006986
    69. Fourier, J. B. J. (1822). Théorie analytique de la chaleur. Paris.
    70. Cattaneo, C. (1948). Sulla conduzione del calore. Atti Seminario Matematico e Fisico dell’Università di Modena e Reggio Emilia, 3(83–101)
    71. Straughan, B., & Franchi, F. (1984). Benard convection and the Cattaneo law of heat conduction. Proceedings of the Royal Society of Edinburgh, 96A(175–178).
    72. Christov, C. I. (2009). On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36(481–486). https://doi.org/10.1016/j.mechrescom.2009.02.001
    73. Liao, S. (2003). Beyond perturbation: Introduction to homotopy analysis method. Chapman and Hall, CRC Press.
    74. Hilton, P. J. (1953). An introduction to homotopy theory. Cambridge University Press.
    75. Sen, S. (1983). Topology and geometry for physicists. Academic Press.
    76. Ijaz, M., & Ayub, M. (2019). Simulation of magnetic dipole and dual stratification in radiative flow of ferromagnetic Maxwell fluid. Heliyon, 5(4), e01465. https://doi.org/10.1016/j.heliyon.2019.e01465
    77. Liao, S. (2003). Beyond perturbation: Introduction to the homotopy analysis method.Chapman / Hall/CRC.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE