| 研究生: |
鄭慶安 Jeng, Ching-An |
|---|---|
| 論文名稱: |
環境效應對射出成型碳化鉻/氧化鋁複合材料破壞之影響 Influence of Environmental Effects on Fracture of Injection Moulded Cr3C2/Al2O3 Composite |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 破壞 、複合材料 、表面殘留應力 、沖蝕 、磨耗 |
| 外文關鍵詞: | composite, surface residual stress, fracture, wear, erosion |
| 相關次數: | 點閱:71 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗分為兩大主題,第一部分偏重熱效應對複合材料之影響。而磨耗、沖蝕等環境效應之影響,為第二部分探討的議題。
Cr3C2/Al2O3複合材料置於空氣中長時間氧化,以壓痕強度法量測R-curve行為,並探討相變化。氧化層包含氧化鋁及氧化鋁/氧化鉻之固溶體,此氧化層經由非破壞性之X光繞射與壓痕等方法量測表面殘留應力,分別為-179 MPa與-195 MPa,與理論計算熱膨脹係數之差異所導致之殘留應力-139 MPa稍有差異。此氧化層明顯能提升裂縫之成長阻力。實驗發現裂縫癒合對裂縫之成長阻力亦有幫助。
超音波被用來量測Cr3C2/Al2O3複合材料之熱震性質,傳統水淬火法將試片加熱瞬間掉入水中,以不同頻率之窄頻短正弦波與寬頻脈衝進行試驗,結果顯示超音波性質與淬火溫度有明顯關係,隨著淬火溫度之提高,強度與表面殘留應力逐漸下降。
用碳化矽球對Cr3C2/Al2O3複合材料盤進行無潤滑之銷對盤磨耗實驗,發現經燒結過程因顆粒狀強化物與基地熱膨脹係數之差異導致之微裂縫,在整個磨耗破壞機構扮演重要角色。複合材料之磨耗特性確實比單一之Al2O3有提昇之作用,複合材料之移除機構包含有基材與韌化顆粒間之弱界面的破壞、晶粒拉出、顆粒脆裂。一些微研磨與塑性變形亦被觀察。磨耗導致之表面殘留應力為-142 MPa,與經(# 270)鑽石砂輪研磨之表面所導入之殘留應力-158 MPa接近。
承受挾帶沖蝕材高速氣流之衝擊試驗,結果顯示沖蝕率與沖擊角度、沖蝕材顆粒大小、種類及速度有關。其沖蝕機構與損傷也有差異。沖蝕後之殘留強度、沖蝕率與沖蝕導致之表面殘留應力有一致性之變化。
承受挾帶沖蝕材高速水流之衝擊試驗,結果顯示沖蝕率與衝擊角度、沖蝕材顆粒大小、壓力有關。燒結過程因顆粒狀強化物與基地熱膨脹係數之差異導致之微裂縫,在整個沖蝕機構亦居關鍵角色。當在壓力500 psi,用碳化矽(# 80)顆粒沖蝕時,複合材之沖蝕面微結構主要包含基面雙晶與差排,這些觀察建議基面雙晶與部分差排有最低臨界分解激發應力。
This study focused on investigating the influence of heat and environmental effects on mechanical properties of Cr3C2/Al2O3 composite.
The crack resistance (R-curve) of heat treated Cr3C2/Al2O3 composite was studied using the indentation-strength-in-bending technique. The oxidation layer containing alumina and alumina/chromia solid solution was in a compression of 179 MPa and 195 MPa as evaluated by X-ray analysis and indentation method, respectively. The results were slightly different from the thermal mismatch calculation (139 MPa). The relatively compressive, low porous oxidation layer caused significant increase in crack resistance. Crack healing could contribute also partially to crack resistance.
The ultrasonic technique is proposed for assessment of thermal shocked damage of Cr3C2/Al2O3 composites. This includes narrowband tone burst and broadband pulse measurements from different frequency. The results reveal the acoustic properties strongly depend on the quenching temperatures. The shock-induced surface residual stresses decreased with increasing quenching temperatures.
The wear resistance and fracture mechanisms of Cr3C2/Al2O3 composite were investigated with a pin-on-disk test configuration against a silicon carbide sphere at room temperature in unlubricated sliding. The results suggest that the microcracking induced from residual stresses could play an important role in predicting the wear behavior. Although the addition of Cr3C2 to Al2O3 matrix improved its crack growth resistance, it enhanced the wear resistance. The mechanisms of material removal was related to the failure of the particle-matrix interface, resulting in particle pullout, wear debris and chipping of the matrix. A microabrasive mechanism and microplastic deformation were also observed. The worn-induced surface residual stress (142 MPa) was similar to that induced by #270 diamond wheel grinding (158 MPa).
Concerning the effects of erosive particle size and impact angle on the wear rate and surface residual stress, the impact damage behavior of injection moulded Cr3C2/Al2O3 composite was investigated. The experiments were performed using a gas blast erosion rig with SiC and Al2O3 erodents. The results suggest that the larger erodent particles are more effective in displacing and damaging the surface compared to the smaller particles, and lead to higher wear rate and surface residual stress. The variation in surface residual stress with kinetic energy is consistent with the erosion rate and post-erosion strength.
This study has been made of erodent size, liquid pressure and impact angle on wet erosion wear, surface residual stress and impact damage behavior of injection moulded Cr3C2/Al2O3 composites. Spontaneous microcracking induced from sintering process, due to thermal expansion mismatch between alumina and chromium carbide, played a key role in erosion mechanism. Deformed microstructures included basal twins and dislocations were observed when composite erdoded by SiC #80 grit at a water pressure 500 psi. This observation suggests the basal twins and the partial dislocation have the lowest critical resolved stress to activation.
1. M. Yasuoka, M.E. Brito, K. Hiro and S. Kanzaki, “Effects of Dispersed Particle size on Mechanical Properties of Alumina/Non-Oxide Composites,” J. Ceram. Soc. Jan., 101, 865-869 (1994).
2. R.P. Wahi and B. Bschner, “Fracture Behavior of Composites Based on Al2O3-TiC,” J. Mater. Sci., 15, 875-885 (1980).
3. J. Liu and P.D. Ownby, “Boron Carbide Reinforced Alumina Composites,” J. Am. Ceram. Soc., 74[3] 674-677 (1991).
4. C.H. Jung and C.H. Kim, “Sintering and Characterization of Al2O3-TiC composites,” J. Mater. Sci., 26, 5037-5040 (1991).
5. S. Lio, M. Watanabe, M. Matsubara and Y. Matsuo, “Mechanical Properties of Alumina/Silcon Carbide Whisker Composites,” J. Am. Ceram. Soc., 72[10], 1880-1884 (1989).
6. C.T. Fu and J.M. Wu, “Microstructure and Mechanical Properties of Cr3C2 Particulate Reinforced Al2O3 Matrix Composites,” J. Mater. Sci., 29, 2671-2677 (1994).
7. C.T. Fu, A.K. Li and J.M. Wu, “Effects of Oxidation of Cr3C2 Particulate Reinforced Al2O3 Matrix Composites on Microstructure and Mechanical Structure Properties,” J. Mater. Sci., 28, 6285-6294 (1993).
8. C.T. Fu, A.K. Li and J.M. Wu, ”Effects of Post-sinter Hot Isostatic Pressing Processes on Microstructures and Mechanical Properties of Al2O3-Cr3C2 Composites,” Bri. Cerm. Trans., 93[5], 178 –182 (1994).
9. 傅承祖, “國立清華大學材料科學與工程研究所博士論文,” 1994.
10. K.M. Shu, C.T. Fu and J.M. Liu, “Electrodischarge-Machining of Al2O3/Cr3C2 composites,” J. Mater. Sci. Let.,13,1146-1148 (1994).
11. K.T. Faber and A.G. Evans, “Crack Deflection Process-I. Theory,” Acta Metall., 31[4], 565-576 (1983).
12. K.T. Faber and A.G. Evans, “Crack Deflection Process-II. Experiment,” Acta Metall., 31[4], 577-584 (1983).
13. M. Taya, S. Hayyashi, A.S. Kobayashi and H.S. Yoon, “Toughening of a Particulate Reinforced Ceramic-Matrix Composite by Thermal Residual Stress,” J. Am. Ceram. Soc., 73[5], 1382-1391 (1990).
14. K.T. Faber and A.G. Evans, “Toughening of Ceramic by Circumferential Microcracking,” J. Am. Ceram. Soc., 64[7], 394-398 (1981).
15. R.W. Rice, “Toughening in Ceramic Particulate and Whisker,” Ceram. Eng. Sci. Proc., 2[2-8], 565-576 (1983).
16. 涂國基, “國立成功大學材料科學及工程研究所碩士論文,” 1995.
17. D.F. Lii, J.L. Huang, K.C. Twu and A.K. Li, “Investigation of Al2O3/Cr3C2 Composites Prepared by Pressureless Sintering (Part 1),” J. Ceram. Soc. Jan., 104, 796-801 (1996).
18. J.L. Huang, D.F. Lii, K.C. Twu and A.K. Li, “ Investigation of Al2O3/Cr3C2 Composites Prepared by Pressureless Sintering (Part 2),” Mater. Chem. and Phys., 51, 211-215 (1997).
19. J.L. Huang, J.J. Huang, C.A. Jeng and A.K. Li, “Investigation of Al2O3/Cr3C2 Composites Prepared by Pressureless Sintering (Part 3),” Ceram. Int., 25, 141-144 (1999).
20. 黃俊傑, “國立成功大學材料科學及工程研究所碩士論文,” 1996.
21. D.F. Lii, J.L. Huang, J.J. Huang and H.H. Lu, “The Interfacial Reaction in Cr3C2/Al2O3 Composites.” J. Mater. Res., 14, 817-823 (1999).
22. 林浩東, “國立成功大學材料科學及工程研究所碩士論文,” 1997.
23. J.L. Huang, H.D. Lin, C.A. Jeng and D.F. Lii, “Crack Growth Resistance of Cr3C2/Al2O3 Composites,” Mater. Sci. and Eng., A279, 81-86 (2000).
24. 王世明, “國立成功大學材料科學及工程研究所碩士論文,” 1998.
25. C.A. Jeng, J.L. Huang, S.M. Wang and C.Y. Chen, “Fatigue and R-curve Behavior of an Al2O3-10%Cr3C2 Composite,” J. Mater. Sci., 37, 1-5 (2002).
26. R.G. German, Powder Injection Moulding, MPIF, Princeton, N.J. 1990.
27. M.J. Edirisinghe and R.G. Evans, “Review : Fabrication of Engineering Ceramics by Injection Moulding I,” Advance in Ceramics, vol. 9, edited by J.A. Mangels & G.L. Messing, pp. 220-223 (1984).
28. M.J. Edirisinghe and R.G. Evans, “Review : Fabrication of Engineering Ceramics by Injection Moulding II, Techniques,” Int. J. High Technology Ceramics, Vol. 2, 240-278 (1986).
29. 吳柏勳, “國立成功大學材料科學及工程研究所碩士論文,” 1994.
30. D.B. Marshall and B.R. Lawn, “An Indentation Technique for Measuring Stresses in Tempered Glass Surfaces,” J. Am. Ceram. Soc., 60, 86-87 (1977).
31. B.R. Lawn and E.R. Jr. Fuller, “Measurement of Thin-Layer Surface Stresses by Indentation Fracture,” J. Mater. Sci., 19, 4061-4067 (1984).
32. M.F. Gruninger, B.R.Lawn, E.N. Farabaugh and J.B. Jr. Wachtman, “Measurement of Residual Stresses in Coating on Brittle Substrates by Indentation,” J. Am. Ceram. Soc., 70, 344-348 (1987).
33. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Ch. 16, Reading, MA, Addison-Wesley, (1978).
34. I.C. Noyan and J.B. Cohen, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, NY (1987).
35. 吳翼貽, “以X光照繞射量測殘留應力,”,科儀新知, 13[6], 23-34 (1992).
36. 黃炳淮, “以X光照繞射量測殘留應力,”,科儀新知, 22[2], 23-30 (1992).
37. R.F. Krause, “Rising Fracture Toughness from the Bending Strength of Indented Alumina Beams,” J. Am. Ceram. Soc., 71[5], 338-343 (1988).
38. R.F. Cook and D.R. Clarke, “Fracture Stability, R-curve and Strength Variability,” Acta Metal., 36[3], 555-562 (1988).
39. P.F. Becher, D.Lewis III, K.C. Karman and A.C. Gonzalez, “Thermal Shock Resistance of Ceramics: Size and Geometry Effects in Quench Test,” J. Am. Ceram. Soc. Bull., 59[5], 542-548 (1980).
40. R.W. Davidge, Mechanical Behavior of Ceramics, Cambridge University Press, New York (1979).
41. D.P.H. Hasselman, “ Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics,” J. Am. Ceram. Soc., 52[11], 600-604 (1969).
42. J.B. Walsh, “Effect of Cracks on the Compressibility of Rock,” J. Geophys. Res. 70[2], 381-389 (1965).
43. T. Anderson and D.J. Rowcliffe, “Indentation Thermal Shock Test for Ceramics,” J. Am. Ceram. Soc., 79[6], 1509-1514 (1996).
44. M. Collin and D. Rowcliffe, “Analysis and Prediction of Thermal Shock in Brittle materials,” Acta Mater., 48, 1655-1665 (2000).
45. B.R. Lawn and R. Wilshaw, “Indentation Fracture: Principle and Applications,” J. Mater. Sci., 10, 1049-1981, (1975).
46. A.G. Evans and D.B. Marshall, Fundamentals of Friction and Wear of Materials, D.A. Rigney, Ed., American Society for Metals, pp. 439-452 (1981).
47. D.H. Buckley, Surface Effects in Adhesion, Friction, Wear and Lubrication, Elsevier Science Publishing Company, The Netherlands, pp. 429-510, (1981).
48. L.E. Samuels, E.D. Doyle and D.M. Turley, Fundamentals of Friction and Wear of Materials, D.A. Rigney, ed., American Society for Metals, pp. 13-41, (1981).
49. K. Kato, “Tribology of Ceramics,” Wear, 136, 117-133 (1990).
50. K.H. Zum Gahr, Microsstructure and Wear of Materials, Elsevier Science Publishing Company, The Netherlands, pp.80-131 (1987).
51. H. Crichos, Tribology, Elsevier Science Publishing Company, The Netherlands, pp.112-122 (1987).
52. J.F. Braza, H.S. Cheng and M.E. Fine, “Silicon Nitride Wear Mechanism: Rolling and Sliding Contact,” STLE Tribology Transactions, 32. 439-446 (1989).
53. G. Richards, “Alumina Ceramics,” Tran. and J. of the British Ceramics Society, 80 [4], 120-124 (1980).
54. R. Bellman and A. Lery, “Erosion Mechanism in Ductile Metal,” Wear, 70, 1-27 (1981).
55. K.Z. Gahr, Microstructure and Wear of Material, Tribology Series 10, Elserier Science Publishing Company, The Netherlands, 1987.
56. S. Timosheko, Theory of Elasticity, 1st ed., Mcgraw-Hill Book Company Inc., New York.1934.
57. A.G. Evans, M.E. Gulden and M.E. Rosenblatt, “Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime,” Proc. Roy. Soc. London Ser., A361, 343-365 (1978).
58. A.G. Evans, “Impact Damage Mechanics: Solid Projectiles,” in Treatise on Material Science and Technology, vol. 16, ed. by C.M. Preece. pp 1-67, Academic Press, New York. 1979.
59. S.M. Wiederhorn and B.R. Lawn, “Strength Degradation of Glass Impacted with Sharp Particles : I, Annealed Surfaces,” J. Am. Ceram. Soc., 62, 66-70 (1979).
60. S.M. Wiederhorn and B.J. Hockey, “Effect of Material Parameters on the Erosion Resistance of Brittle Materials,” J. Mater. Sci., 18, 766-780 (1983).
61. S.F. Wayne and S.T. Buljan, “Microstructure and Wear Resistance of Silicon Nitride Composites,” in Friction and Wear of Ceramics. Ed. by S. Jahamir, pp. 261-268, Marcel Dekker Inc., New York.1994.
62. D.M. Liu, C.T. Fu and J.T. Lin, “Erosion Wear in Al2O3-Cr3C2 Composites,” Ceram. Int., 22, 415-420 (1996).
63. 楊政修, “逢甲大學材料科學及工程研究所碩士論文,” 2002年..
64. A.W. Ruff and L.K. Ives, “Measurement of Solid Particle Velocity in Erosive Wear,” Wear, 35, 195-199 (1975).
65. ASTM G73-93, Liquid Impingement Erosion Testing, ASTM, 1993.
66. H.C. Lin S.K. Wu and C.H. Yeh, “A Comparison of Slurry Erosion Characteristics of TiNi Shape Memory Alloys and SUS 304 Stainless Steel,” Wear, 249, 557-565 (2001).
67. L.R. Rossi and W.G. Lawrence, “Elastic Properties of Oxide Solid Solutions: the System Al2O3-Cr2O3,” J. Am. Ceram. Soc., 53, 604-608 (1971).
68. H.C. Han, D.Y. Soon and M.K. Brum, “Migration of Grain Boundaries in Alumina Induced by Chromia Addition,” Acta Metall. Mater., 43, 977-984 (1995).
69. M. Watanabe, T. Hirayama, M. Yoshinaka, K. Horita and O. Yamaguchi, “Formation of Continuous Series of Solid Solutions from Powders Prepared by Hydrazine Method: the System Al2O3-Cr2O3,” Mater. Res. Bul., 31, 861 (1996).
70. C.L. Li, D.H. Riu, T. Sekino and K. Nihara, “Fabrication and Mechanical Properties of Solid Solution with Low Addition of Cr2O3,” Key Engineering Materials, Vol. 161-163, 161-164 (1999).
71. H.C. Granam and H.H. Davis, “Oxidation/Vaporization Kinetics of Cr2O3,” J. Am. Ceram. Soc., 54, 89-93 (1971).
72. K.K. Tojek and D.J. Green, “Effect of Residual Stress on the Strength Distribution of Brittle Materials,” J. Am. Ceram. Soc., 72, 1885-1890 (1989).
73. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., pp. 609, Wiley, New York. 1976.
74. R. Tandan and D.J. Green, “Surface Stress Effects on Indentation Fracture Sequences,” J. Am. Ceram. Soc., 73, 2619-2627 (1990).
75. D.A. Duke, J.E. Megles, J.E. MacDowell and H.E. Bopp, “Strengthening Glass-Ceramics by Application of Compressive Glazes,” J. Am. Ceram. Soc., 51, 98-102 (1968).
76. A.V. Virkar, J.L. Huang and R.A. Cutler, “Strengthening of Oxide Ceramics by Transformation-Toughened Stresses,” J. Am. Ceram. Soc.,70, 164-170 (1987).
77. D.J. Green, “A Technique for Introducing Surface Compression into Zirconia Ceramics,” J. Am. Ceram. Soc., 66, C178-C179 (1983).
78. R. Lakshminarayanan, D.K. Shetty and R.A. Cutler, “Toughening of Layered Ceramic Composites with Residual Surface Compression,” J. Am. Ceram. Soc., 79, 79-87 (1996).
79. R. Tandan and D.J. Green, “Crack Stability and T-Curve Due to Macroscopic Residual Compressive Stress Profiles,” J. Am. Ceram. Soc., 74, 1981-1986 (1991).
80. F.F. Lange, “Healing of Surface Cracks in SiC by Oxidation,” J. Am. Ceram. Soc., 53, 290 (1970).
81. Y.H. Zhang, L. Edwards and W.J. Plumbridge, “Crack Healing in a Silicon Nitride Ceramics,” J. Am. Ceram. Soc., 81, 1861-1868 (1998).
82. C.C. Chiu, “Influence of Surface Oxidation on Thermal Shock Resistance and Flexural Strength of SiC/Cr3C2 Composites,” J. Mater. Sci., 29, 2078-2082 (1994).
83. I.A. Chou, H.M. Chan and M.P. Harmer, “Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of Silicon Carbide-Reinforced Alumina Nanocomposites,” J. Am. Ceram. Soc., 81, 1203-1208 (1998).
84. A.M. Thompson, H.M. Chan and M.P. Harmer, “Crack Healing and Stress Relaxation in Al2O3-SiC Nanocomposites,” J. Am. Ceram. Soc., 78, 567-571 (1995).
85. T.K. Gupta, “Strength Degradation and Crack Propagation in Thermally Shocked Al2O3,” J. Am. Ceram. Soc., 55, 249-253 (1972).
86. D.P. Hasselman, “Strength Behavior of Polycrystalline Alumina Subjected to Thermal Shock,” J. Am. Ceram. Soc., 53, 490-495 (1970).
87. 郭宗志, “國立中央大學機械工程研究所碩士論文,” 1996.
88. E.H. Lutz, M.V. Swain and N. Claussen, “Thermal Shock Behavior of Duplex Ceramics,” J. Am. Ceram. Soc., 74, 19-24 (1991).
89. W.P. Rogers, A.F. Emery, R.C. Bradt and A.S. Kobayashi, “Statistical Study of Thermal Fracture of Ceramic Materials in the Water Quench Test,” J. Am. Ceram. Soc., 70, 406-412 (1987).
90. S.R. Choi and J.A. Salem, “Thermal Shock Behavior of Silicon Nitride Flexure Beam Specimens with Indentation Cracks,” J. Am. Ceram. Soc., 77, 835-838 (1994).
91. S. Ishihara, T. Goshima, K. Nomura and T. Yoshimoto, “Crack Propagation Behavior of Cermets and Cemented Carbides under Repeated Thermal Shocks by the Improved Quench Test,” J. Mater. Sci., 34, 629-636 (1999).
92. G.S. Kino, Acoustic Wave Devices, Imaging and Analog Signal Processing, Prentice-Hill, Inc., Englewood Cliffs, New Jersey.1987.
93. K.J. Konsztowicz, “Crack Growth and Acoustic Emission in Ceramic during Thermal Shock,” J. Am. Ceram. Soc., 73, 502-508 (1990).
94. F. Mignard, C. Olagnon and G. Fantozzi, “Acoustic Emission Monitoring of Damage Evaluation in Ceramic Submitted to Thermal Shock,” J. Eur. Ceram. Soc., 15, 651-653 (1995).
95. M. Hefetz and S.I. Rokhlin, “Thermal Shock Damage Assessment in Ceramics Using Ultrasonic Waves,” J. Am. Ceram. Soc., 75, 1839-1845 (1992).
96. S.I. Rokhlin, Y.C. Chu, C.Y. Bakini and R.T. Bhatt, “Ultrasonic Assessment of Thermal Oxidation Damage in SiC/Si3N4 Composites,” Ceram. Eng. Sci. Proc., [9-10], 1164-1172 (1994).
97. S.I. Rokhlin, Y.C. Chu and M. Hefetz, “Ultrasonic Evaluation of Microcrack Thermal Shock Damage in Ceramics,” Ceram. Eng. Sci. Proc., [7-8], 454-462 (1993).
98. S.I. Rokhlin and W. Wang, “Double Through-Transmission Bulk Wave Method for Ultrasonic Phase Velocity Measurement and Determination of Elastic Constants of Composite Materials,” J. Acoust. Soc., Am. 91, 3303-3312 (1992).
99. J.A. Smith, T. Chotard, N. Gimet-Breart and D. Fargeot, “Ultrasonic Measurements as An In Situ Tool for Characterizing the Ageing of An Aluminous Cement at Different Temperatures,” J. Eur. Ceram. Soc., 22, 2261-2268 (2002).
100. D. Ensminger, Ultrasonics-The low- and high-Intensity Applications, Marcel Dekker, New York. 1973.
101. A. Blomberg, M. Olsson and S. Hogmark, “Wear Mechanism and Tribo Mapping of Al2O3 and SiC in Dry Sliding,” Wear, 171, 77-89 (1994).
102. S.C. Lim and M.F. Ashby, “Wear Mechanism Maps,” Acta Metal. 35,1-24 (1987).
103. H. Kong and M. F. Ashby, “Wear Mechanisms in Brittle Solids,” Acta Mater. 40, 2907-2920 (1992).
104. R.W. Rice, “Toughening in Ceramic Particulate and Whisker Composites,” Ceram. Eng. Sci. Proc. 11, 667-694 (1990).
105. Y.S. Chou and D.J. Green, “Silicon Carbide Platelet/Alumina Composites: II, Mechanical Properties,” J. Am. Ceram. Soc. 76, 1452-1458 (1995).
106. J. Selsing, “Internal Stresses in Ceramics,” J. Am. Ceram. Soc., pp. 419 (1961).
107. A.G. Evans, “Microfracture from Thermal Expansion Anisotropy-I. Phase Systems,” Acta Metal., 26, 1845-1853 (1978).
108. Y. Fu and A.G. Evans, “Some Effect of Microcracks on the Mechanical Properties of Brittle Solids-I,” Acta Metal., 33, 1515-1523 (1985).
109. V. Tvergaard and J.W. Hutchinson, “Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy,” J. Am. Ceram. Soc. 71, 157-166 (1988).
110. A. Zimmermann, W.C. Carter and E.R. Fuller Jr, “Damage Evolution during Microcracking of Brittle Solids,” Acta Metal. Mater., 49, 127-137 (2001).
111. K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, U.K. 1985.
112. R.M. Cannon, W.H. Rhodes and A.H. Heuer, “Plastic Deformation of Fine-Grained Alumina (Al2O3) I, Interface-Controlled Diffusional Creep,” J. Am. Ceram. Soc. 63, 46-53 (1980).
113. B.J. Inkson, “Dislocations and Twinning Activated by the Abrasion of Al2O3,” Acta Metal. Mater., 48, 1883-1895 (2000).
114. J.D Snow and A.H. Heuer, “Slip System in Al2O3,” J. Am. Ceram. Soc. 56, 153-157 (1973).
115. J. Lankford, W.W. Predebon, J.M. Staehler, G. Subhash, B.J. Pletka and C.E. Anderson, “The Role of Plasticity as a Limiting Factor in the Compressive Failure of High Strength Ceramics,” Mechanics of Materials, 29, 205-218 (1998).
116. D. Krajcinovic and A. Stojimirovic, “Deformation Processes in Semi-Brittle Polycrystalline Ceramics,” J. of Fracture, 42, 73-86 (1990).
117. V. Heuer, G. Walter and I.M. Hutchings, “A Study of the Erosive Wear of Fibrous Ceramic Components by Solid Particle Impact,” Wear, Vol. 225-229, 493-501 (1999).
118. P.J. Slikkerveer, P.C.P. Bouten, F.H. int Veld and H. Scholten, “Erosion and Damage by Sharp Particles,” Wear, 217, 237-250 (1998).
119. S. Bahadur and R. Badruddin, “Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion,” Wear of Materials, ASME, New York, ed., K.C. Ludema, 143-153 (1989).
120. M. Liebhard and A.V. Levy, “The Effect of Erodent Particle Characteristics on the Erosion of Metals,” Wear of Materials, ASME, New York, ed., K.C. Ludema and R.G. Bayer, 123-127 (1991).
121. P.H. Shipway and I.M. Hutchings, “The Influence of Particle Properties on the Erosive Wear of Sintered Boron Carbide,” Wear of Materials, ASME, New York, ed., K.C. Ludema and R.G. Bayer, 63-70 (1991).
122. R.S. Lynn, K.K. Wong and H.M. Clark, “On the Particle Size Effect in Slurry Erosion,” Wear of Materials, ASME, New York, ed., K.C. Ludema and R.G. Bayer, 77-82 (1991).
123. J.L. Routbort, R.O. Scattergood and A.P.L. Turner, “The Erosion of Reaction-Bonded SiC,” Wear, 59, 363-375 (1980).
124. J.L. Routbort, R.O. Scattergood and E.K. Kay, “Erosion of Silicon Single Crystals,” J. Am. Ceram. Soc., 63, 635-640 (1980).
125. A.G. Evans and R. Wilshaw, “Quasi-Static Solid Particle Damage in Brittle Solids-I. Observations, Analysis and Implications,” Acta Metall., 24, 939-956 (1976).
126. D.A.J. Vaughan, F. Guiu and M.R. Dalmau, “Indentation Fatigue of Alumina,” J. Mater, Sci. Lett., 6, 689-691 (1987).
127. M. Reece and F. Guiu, “Repeated Indentation for Studying Cyclic Fatigue in Ceramics,” J. Am. Ceram. Soc., 73, 1004-1013 (1990).
128. A.J. Sparks and I.M. Hutchings, “Fracture Due to Repeated Indentation in Soda-Lime Glass,” J. Mater, Sci. Lett.,11, 918-920 (1992).
129. A.W. Ruff and S.M. Wiederhorn, “Erosion by Solid Particle Impact,” in Treatise on Materials Science and Technology, vol. 16 C. M. Preece (ed.), Academic Press, NY. pp 69-126 (1979).
130. A.G. Evans and T.R. Wilshaw, “Dynamic Solid Particle Damage in Brittle Materials: An Appraisal,” J. Mater. Sci., 12, 97-116 (1977).
131. S. Wada and N. Watanabe, “Solid Particle Erosion of Brittle Materials (Part 3),’ Yogyo-kyokai-Shi, 95(6), 573-578 (1987).
132. S. Wada, N. Watanabe and T. Tani, “Solid Particle Erosion of Brittle materials (Part 6)-The Erosive Wear of Al2O3-SiC Composites,’ J. Ceram. Soc. Jpn. Inter. Edn., 96, 737 (1988).
133. L. Murugesh and R.O. Scattergood, “Effect of Erodent Properties on the Erosion of Alumina,” J. Mater. Sci., 26, 5456-5466 (1991).
134. R.A. Vaughan and A. Ball, “The Effect of Hardness and Toughness on the Erosion of Ceramic and Ultrahard Materials,” Wear of Materials, ASME, New York, ed., K.C. Ludema and R.G. Bayer, 71-75 (1991).
135. B.J. Hockey, S.M. Wiederhorn and H. Johnson, “Erosion of Brittle Materials by Solid Particle Impact,” in Fracture Mechanics of Ceramics, Vol. #3, edited by R.C. Bradt, D.P.H. Hasselman and F.F. Lange, Plenum Press, New York, pp.379-402 ( 1973).
136. J.E. Ritter, L. Rosenfeld and K. Jakus, “Erosion and Strength Degradation in Alumina,” Wear of Materials, ASME, New York, ed., K.C. Ludema,.1-7 (1985).
137. J.E. Ritter, P. Strzepa, K. Jakus, L. Rosenfeld and K.J. Buckman, “Erosion Damage in Glass and Alumina,” J. Am. Ceram. Soc., 67, 769-774 (1984).
138. J.L. Routbort and R.O. Scattergood, “Solid-Particle Erosion of Ceramics and Ceramic Composites,” in Erosion Ceramic of Materials, ed. J.E. Ritter, Trans. Tech. Publication, Switzerland, pp 23-50 (1992).
139. S.J. Chen and D.G. Howitt, “Observations of Partial Dislocations and Basal Twin Boundaries in Shock-Wave-Deformed Sapphire,” Phil. Mag., 78, 765-776 (1998).
140. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, MA. 1994.
141. M.L. Kronberg, “Plastic Deformation of Single Crystals of Sapphire: Basal Slip and Twinning,” Acta Metal., 5, 507-524 (1957).
142. K. Veit, Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, vol.45, edited by R. Brauns, E. Bergeat, E. Henning and J.F. Pompeckj, E. Schweizerbart’sche, Stuttgart. pp.121-148 (1922).
143. B.J. Hockey, “Pyramidal Slip on {11 3}〈 100〉and Basal Twinning in Al2O3,” in Deformation of Ceramic Materials, edited by R.C. Bradt and R.E. Tressler, Plenum Press, New York, pp.161-179 (1975).
144. S.J. Chen and D.G. Howitt, “A Mechanism to Describe the Basal Twinning of Sapphire,” Acta Metal. Mater., 40, 3249-3253 (1992).
145. P. Pirouz, B.F. Lawlor, T. Geipel, J.B. Bilde-SǾrenson, A.H. Heuer aand K.P.D. Lagerlőf, “On Basal Slip and Basal Twinning in Sapphire (α- Al2O3)-II. A New Model of Basal Twinning,” Acta Mater., 44, 2153-2164 (1996).
146. J.B. Bilde-SǾrenson, B.F. Lawlor, T. Geipel, P. Pirouz, A.H. Heuer and K.P.D. Lagerlőf, “On Basal Slip and Basal Twinning in Sapphire (α-Al2O3)-I. Basal Slip Revisted,” Acta Mater., 44, 2145-2152 (1996).