簡易檢索 / 詳目顯示

研究生: 陳維哲
Chen, Wei-Che
論文名稱: 於能源管理系統中設計與實作可信任令牌認證機制
Design and Implement a Trusted Token Authentication Mechanism in Energy Management System
指導教授: 楊竹星
Yang, Chu‐Sing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 63
中文關鍵詞: 身分認證令牌SCADA安全Modbus能源管理系統
外文關鍵詞: Authentication, Token, SCADA Security, Modbus, Energy Management System
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,由於工業物聯網的需求大幅增加,促使工業自動化及工業控制系統的進階連線功能進一步提升,因此資料採集與監控系統(SCADA)從傳統的封閉網路轉換成開放且高度互聯的網路,其中工業電子設備之間的溝通是透過Modbus協議與SCADA系統來實現。由於SCADA和Modbus容易控制及監視,因此工業控制系統中的互連和操作效率有很大的提高,但是,這種連接性造成系統暴露在開放的網路環境中。SCADA系統存在許多安全威脅與漏洞,特別是在工業物連網時代,工業系統的任何安全漏洞都有可能導致嚴重的財產損失,甚至是威脅到國家安全。因此,本文提出了一種基於可信任令牌 (Token)認證與傳輸層安全性 (TLS)協議的加密驗證機制,以防止駭客的物理性攻擊。根據實驗結果,本文所提出的安全防禦解決方案可以有效提高系統安全性,並且與實際的系統兼容。

    In recent years, the vigorous development of the Industrial Internet of Things brings the advanced connection function of the new generation of industrial automation and control systems. The Supervisory Control and Data Acquisition (SCADA) system is converted into an open and highly interconnected network, where the equipment connections between industrial electronic devices are integrated with a SCADA system through a Modbus protocol. However, such connectivity inevitably exposes the system to the open network environment. This caused vulnerabilities in the Modbus protocol to be exposed to hackers.

    To solve the aforementioned problem, this study proposes an encryption verification mechanism based on Token and Transport Layer Security (TLS) Protocol Version 1.3 to prevent hackers from conducting various attacks, such as man-in-the-middle attack (MITM). Use Token to authenticate the device and use TLS 1.3 to encrypt Modbus packets. The experimental results show that the proposed mechanism can effectively defend against MITM and DoS attack. In addition, we also conducted experiments in actual fields to increase the effectiveness and feasibility of the proposed mechanism.

    摘要 i 英文延伸摘要 ii 誌謝 viii Table of Contents ix List of Tables xi List of Figures xii Chapter 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 5 1.3. 論文架構 6 Chapter 2. 背景知識與相關研究 8 2.1. The Security of Industrial Control System (ICS) 8 2.2. The Authentication in IoT Environment 10 2.3. Energy Management System (EMS) 12 2.3.1. Community Energy Management System (CEMS) 13 2.3.2. Building Energy Management System (BEMS) 14 2.4. Modbus Protocol 15 2.5. Transport Layer Security (TLS) 18 2.6. Cyber Attack 20 2.6.1. Man-In-The-Middle Attack (MITM) 20 2.6.2. Denial-of-Service Attack (DoS Attack) 21 2.6.3. Replay Attack 22 2.6.4. Impersonation Attack 23 Chapter 3. 系統架構與安全機制 24 3.1. 原有系統架構 24 3.2. 原有系統架構之安全漏洞 27 3.3. 加密驗證機制 29 3.3.1. 加密驗證機制之系統架構 30 3.3.2. 身分驗證機制之註冊階段 31 3.3.3. 身分驗證機制之驗證階段 32 3.4. 攻擊運行加密驗證機制之系統 36 Chapter 4. 安全性分析38 4.1. 主張1:提出的機制為雙向身分認證 38 4.2. 主張2:提出的機制可抵抗中間人攻擊 38 4.3. 主張3:提出的機制可抵抗阻斷服務攻擊 39 4.4. 主張4:提出的機制可抵抗重送攻擊 39 4.5. 主張5:提出的機制可抵抗假冒攻擊 40 Chapter 5. 實驗與分析 41 5.1. 實驗環境介紹 41 5.2. 驗證加密驗證機制 44 5.2.1. 驗證加密驗證機制可抵禦中間人攻擊 44 5.2.2. 驗證加密驗證機制可抵禦阻斷服務攻擊 48 5.3. 於實際場域實驗結果 51 5.4. 效能分析 56 Chapter 6. 結論與未來研究方向 58 參考文獻 59

    [1] K. Schwab, The fourth industrial revolution. Currency, 2017.
    [2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17–27, 2017.
    [3] “Auto-ID Labs.” https://www.autoidlabs.org/. [Accessed: 28-Jun-2021].
    [4] C. Roberts, “Radio frequency identification (RFID),” Computers & Security, vol. 25, no. 1, pp. 18–26, 2006.
    [5] D. Evans, “The internet of things: How the next evolution of the internet is changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–11, 2011.
    [6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys Tutorials, vol. 17, pp. 2347–2376, Fourthquarter 2015.
    [7] A. Tiwary, M. Mahato, A. Chidar, M. K. Chandrol, M. Shrivastava, and M. Tripathi, “Internet of things (IoT): Research, architectures and applications,” International Journal on Future Revolution in Computer Science & Communication Engineering, vol. 4, no. 3, pp. 23–27, 2018.
    [8] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control systems (ICS) security,” NIST special publication, vol. 800, no. 82, pp. 16–16, 2011.
    [9] S. A. Boyer, SCADA: supervisory control and data acquisition. International Society
    of Automation, 2009.
    [10] R. A. Reis and W. Webb John, Programmable logic controllers: principles and applications, vol. 4. Prentice Hall, 1998.
    [11] A. Bobat, T. Gezgin, and H. Aslan, “The SCADA system applications in management of Yuvacik Dam and Reservoir,” Desalination and Water Treatment, vol. 54, no. 8, pp. 2108–2119, 2015.
    [12] S. Adnan, S. Zheng, M. D. Rouse, W. Lu, and K. C. Opel, “Distributed control system,” Nov. 29 2005. US Patent 6,968,905.
    [13] N. R. Patel, M. J. Risbeck, J. B. Rawlings, M. J. Wenzel, and R. D. Turney, “Distributed economic model predictive control for large-scale building temperature regulation,” in 2016 American Control Conference (ACC), pp. 895–900, 2016.
    [14] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in SCADA networks,” computers & security, vol. 25, no. 7, pp. 498–506, 2006.
    [15] P. N. Francino and F. C. Huff, “Energy management system,” May 10 2016. US Patent 9,335,748.
    [16] K. Miwa, “Building energy management system,” Sept. 14 2010. US Patent 7,797,084.
    [17] S. Rotger-Griful, U. Welling, and R. H. Jacobsen, “Implementation of a building energy management system for residential demand response,” Microprocessors and Microsystems, vol. 55, pp. 100–110, 2017.
    [18] G. R. Horst, J. Zhang, and A. D. Syvokozov, “Total home energy management system,” July 14 2009. US Patent 7,561,977.
    [19] A.-R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. Alikarar, “A smart home energy management system using IoT and big data analytics approach,” IEEE Transactions on Consumer Electronics, vol. 63, no. 4, pp. 426–434, 2017.
    [20] M. Scheidell, “Intrusion detection system,” Oct. 13 2009. US Patent 7,603,711.
    [21] G. M. Jackson, “Intrusion prevention system,” Nov. 25 2008. US Patent 7,458,094.
    [22] A. Mallik, “Man-in-the-middle-attack: Understanding in simple words,” Cyberspace: Jurnal Pendidikan Teknologi Informasi, vol. 2, no. 2, pp. 109–134, 2019.
    [23] D. Upadhyay and S. Sampalli, “SCADA (Supervisory Control and Data Acquisition) systems: Vulnerability assessment and security recommendations,” Computers & Security, vol. 89, p. 101666, 2020.
    [24] “The Transport Layer Security (TLS) Protocol Version 1.3.” https://datatracker.ietf.org/doc/html/rfc8446. [Accessed: 28-Jun-2021].
    [25] C. L. Abad and R. I. Bonilla, “An analysis on the schemes for detecting and preventing ARP cache poisoning attacks,” in 27th International Conference on Distributed Computing Systems Workshops (ICDCSW’07), pp. 60–60, IEEE, 2007.
    [26] C. Adams, Replay Attack, pp. 1042–1042. Boston, MA: Springer US, 2011.
    [27] W. Knowles, D. Prince, D. Hutchison, J. F. P. Disso, and K. Jones, “A survey of cyber security management in industrial control systems,” International journal of critical infrastructure protection, vol. 9, pp. 52–80, 2015.
    [28] A. Volkova, M. Niedermeier, R. Basmadjian, and H. de Meer, “Security challenges in control network protocols: A survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 619–639, 2018.
    [29] L. Fillatre, I. Nikiforov, P. Willett, et al., “Security of SCADA systems against cyber–physical attacks,” IEEE Aerospace and Electronic Systems Magazine, vol. 32, no. 5, pp. 28–45, 2017.
    [30] S. Ghosh and S. Sampalli, “A survey of security in SCADA networks: Current issues and future challenges,” IEEE Access, vol. 7, pp. 135812–135831, 2019.
    [31] M. K. Ferst, H. F. de Figueiredo, G. Denardin, and J. Lopes, “Implementation of secure communication with modbus and transport layer security protocols,” in 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp. 155–162, IEEE, 2018.
    [32] “Modbus Security Protocol Specification.” https://www.modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf. [Accessed: 28-Jun-2021].
    [33] S. Figueroa-Lorenzo, J. Añorga, and S. Arrizabalaga, “A role-based access control model in modbus scada systems. a centralized model approach,” Sensors, vol. 19, no. 20, p. 4455, 2019.
    [34] A. Tidrea, A. Korodi, and I. Silea, “Cryptographic considerations for automation and scada systems using trusted platform modules,” Sensors, vol. 19, no. 19, p. 4191, 2019.
    [35] N. M. Karie, N. M. Sahri, and P. Haskell-Dowland, “Iot threat detection advances, challenges and future directions,” in 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT), pp. 22–29, IEEE, 2020.
    [36] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A Survey of Internet of Things (IoT) authentication schemes,” Sensors, vol. 19, no. 5, p. 1141, 2019.
    [37] E. Pricop, J. Fattahi, N. Parashiv, F. Zamfir, and E. Ghayoula, “Method for authentication of sensors connected on Modbus TCP,” in 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), pp. 0679–0683, IEEE, 2017.
    [38] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of Trust: A decentralized blockchain-based authentication system for IoT,” Computers & Security, vol. 78, pp. 126–142, 2018.
    [39] S. Kalra and S. K. Sood, “Secure authentication scheme for IoT and cloud servers,” Pervasive and Mobile Computing, vol. 24, pp. 210–223, 2015.
    [40] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi, J. Rodriguez, A. Bicaku, S. Maksuti, M. G. Tauber, C. Schmittner, and J. Bastos, “A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 288–296, 2017.
    [41] M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci, and C. Gransart, “Tokenbased lightweight authentication to secure IoT networks,” in 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4, IEEE, 2019.
    [42] M. N. Aman, K. C. Chua, and B. Sikdar, “Mutual authentication in IoT systems using physical unclonable functions,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1327–1340, 2017.
    [43] V. S. Kaulgud and S. Paul, “Community energy management system,” Oct. 24 2017. US Patent 9,798,298.
    [44] T. Miyamoto, M. Okada, T. Fukuda, S. Kitamura, K. Mori, and Y. Izui, “Distributed dayahead scheduling in community energy management systems using inter-community energy trade,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 13, no. 6, pp. 858–867, 2018.
    [45] Y. Zhou, Z. Wei, G. Sun, K. W. Cheung, H. Zang, and S. Chen, “A robust optimization approach for integrated community energy system in energy and ancillary service markets,” Energy, vol. 148, pp. 1–15, 2018.
    [46] K. Park, Y. Kim, S. Kim, K. Kim, W. Lee, and H. Park, “Building energy management system based on smart grid,” in 2011 IEEE 33rd international telecommunications energy conference (INTELEC), pp. 1–4, Ieee, 2011.
    [47] R. Missaoui, H. Joumaa, S. Ploix, and S. Bacha, “Managing energy smart homes according to energy prices: analysis of a building energy management system,” Energy and Buildings, vol. 71, pp. 155–167, 2014.
    [48] P. Zhao, S. Suryanarayanan, and M. G. Simoes, “An energy management system for building structures using a multi-agent decision-making control methodology,” IEEE transactions on industry applications, vol. 49, no. 1, pp. 322–330, 2012.
    [49] “Modbus Protocol Specification.” https://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.[Accessed: 28-Jun-2021].
    [50] “Prohibiting Secure Sockets Layer (SSL) Version 2.0.” https://datatracker.ietf.org/doc/html/rfc6176. [Accessed: 28-Jun-2021].
    [51] “Deprecating Secure Sockets Layer Version 3.0.” https://datatracker.ietf.org/doc/html/rfc7568. [Accessed: 28-Jun-2021].
    [52] “The TLS Protocol Version 1.0.” https://datatracker.ietf.org/doc/html/rfc2246. [Accessed: 28-Jun-2021].
    [53] “The Transport Layer Security (TLS) Protocol Version 1.1.” https://datatracker.ietf.org/doc/html/rfc4346. [Accessed: 28-Jun-2021].
    [54] “The Transport Layer Security (TLS) Protocol Version 1.2.” https://datatracker.ietf.org/doc/html/rfc5246. [Accessed: 28-Jun-2021].
    [55] “National Security Agency Safety Guideline.” https://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF. [Accessed: 28-Jun-2021].
    [56] “Cyber Attack.” Internet Security Glossary. [Accessed: 28-Jun-2021].
    [57] “Internet DenialofService Considerations.” https://datatracker.ietf.org/doc/html/rfc4732. [Accessed: 28-Jun-2021].
    [58] C. Adams, Impersonation Attack, pp. 286–286. Boston, MA: Springer US, 2005.
    [59] F. Wen and X. Li, “An improved dynamic ID-based remote user authentication with key agreement scheme,” Computers & Electrical Engineering, vol. 38, no. 2, pp. 381–387, 2012.
    [60] H.-C. Hsiang and W.-K. Shih, “Improvement of the secure dynamic ID based remote user authentication scheme for multi-server environment,” Computer Standards & Interfaces, vol. 31, no. 6, pp. 1118–1123, 2009.
    [61] Y.-P. Liao and S.-S. Wang, “A secure dynamic ID based remote user authentication scheme for multi-server environment,” Computer Standards & Interfaces, vol. 31, no. 1, pp. 24–29, 2009.
    [62] I. Butun, A. Sari, and P. Österberg, “Hardware security of fog end-devices for the internet of things,” Sensors, vol. 20, no. 20, p. 5729, 2020.

    無法下載圖示 校內:2026-08-02公開
    校外:2026-08-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE