簡易檢索 / 詳目顯示

研究生: 謝雨倫
Hsieh, Yu-Lun
論文名稱: 近紅外光驅動金奈米棒表面雙股DNA:進行六配位鉑之前驅藥物和艾黴素雙重抗癌藥釋放之策略
Near-infrared Drug Release of Platinum(IV)-prodrug and Doxorubicin in Thermoresponsive DNA-Gold Nanorods
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 金奈米棒近紅外光藥物控制釋放合併化療順鉑艾黴素
外文關鍵詞: Gold nanorod, controlled drug release, combination chemotherapy, Near-infrared, Cisplatin, Doxorubicin
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近紅外光相較於其他波段的電磁波在生物組織的穿透度最高,可穿透組織中內生的發色團(Chormophore)、血紅蛋白、黑色素(melanin)或脂質,且在適當的雷射強度下,近紅外光對生物體的殺傷力也很低,故選用此波段當做藥物載體的觸發光源是相當恰當的。為突破傳統藥物載體只有運載輸送藥物的功能,後續在藥物載體的發展上更傾向主動式驅動藥物控制釋放(active triggered control drug release)的形態,使醫療過程中,能夠更加準確掌握藥物釋放的空間位置和時間點。且目前裝載於一奈米粒子的藥物通常只有一種,若能將兩種或兩種以上的藥物藉由物理吸附或化學鍵結的方式修飾於單一顆奈米粒子,則在化學治療中的合併治療(combination chemotherapy)上又能開闢一研究新頁。
    由於金奈米棒對近紅外光具高效能的光熱轉換性質,故本實驗以金奈米棒當作藥物載體,在其表面進行一連串的表面修飾,其中最重要的表面修飾環節是在金奈米棒上修飾雙股DNA,因我們利用對熱敏感的DNA雙股螺旋來攜帶六配位前驅藥物(Pt(IV)-prodrug)和艾黴素(Doxorubicin),其中Pt(IV)-prodrug利用醯胺鍵結的方式修飾於互補DNA之尾端,而Dox則以嵌入的方式進入DNA鹼基對中間。當金奈米棒接收近紅外光光源後,將光能轉換成熱能,熱能轉移至金奈米棒表面的雙股DNA時,即可破壞雙股DNA間之氫鍵,使兩股序列解旋去雜交而釋放出Pt(IV)-prodrug和Doxorubicin,藉此方式達到主動式藥物控制釋放。另外,我們也在金奈米棒上修飾抗體,使藥物載體更具標靶的性質。
    目前的研究將主動式藥物控制釋放、合併化學治療、標靶定位等三重功能集結於一金奈米棒,未來更可加入金奈米棒之光熱治療和顯影功能,使金奈米棒在生物醫學應用上更具廣度。

    The irregular drug release due to a variation in physiological conditions and notched distribution of drug in body leading to adverse reactions are the major drawbacks of conventional drug delivery systems (DDS). In order to improve these drawbacks, externally activated DDS that can trigger release of a drug at the right site and at a appropriate rate in response to the progression of the disease are attractive. Light responsive biomaterials are receiving increasing attention owing to the possibility of them sensitive to innocuous electromagnetic radiation, especially near-infrared (NIR). NIR, ca. 650-900 nm, this window is bounded at the low end by the absorbance of hemoglobin and at the high end by the absorbance of water. Between these limits, light can penetrate tissue on the order of hundreds of micrometers to centimeters.So we use gold nanorods, such geometry allows highly efficient photothermal conversion due to the matched NIR resonant frequency, as the drug carrier. We modified the thermosensitive double helices DNA on gold nanorods, and through Pt-conjugated, Dox-intercalated DNA, both drugs can be codelivered via a single particle. When NIR irradiation heated the nanorods, DNA on the nanorods would dehybridize the double helices and release both drugs, Pt(IV)-prodrug and Doxorubicin. In addition to NIR triggered drug release, we modified epidermal growth factor (EGF) on gold nanorods to specifically target human lung cancer A549.
    Multicomponent chemotherapy has increasingly become a strategy of great importance in clinical cancer treatments. We present the codelivery of doxorubicin and Pt(IV)-prodrog via a single gold nanorod and potentially giving rise to enhanced therapeutic efficacy in comparison to the free drug combinations. As such,if the single nanoscale platform have the characters of controlled drug release, specifically targeting and combination chemotherapy, the dose requirement could be lowered to reduce dose-limiting toxicity and increase antitumor activity.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 第一章 緒論 1 1-1. 奈米材料之簡介 1 1-2.金奈米棒之介紹與應用 2 1-2-1. 金奈米棒的特性 2 1-2-2. 金奈米棒之合成方法 4 1-2-3. 金奈米棒之表面修飾 6 1-2-4. 金奈米棒在生物上的應用 11 1-3. 抗癌藥六配位鉑與艾黴素之介紹 28 1-3-1. 前驅藥物:六配位鉑 28 1-3-2. 抗癌藥Doxorubicin—艾黴素 32 第二章 實驗藥品與儀器設備 36 2-1. 實驗藥品 36 2-1-1. 實驗Au rod@dsDNA-Pt(IV)/Dox所需之藥品 36 2-2. 儀器設備 37 2-2-1. 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 37 2-2-2. 螢光光譜儀 (Spectrofluorometer) 37 2-2-3. 傅立葉轉換紅外光光譜儀 (Fouries Transform Infrared,FT-IR) 37 2-2-4. 紫外光-可見光吸收光譜儀 (UV-Visible Absorption Spectrometer) 37 2-2-5. 表面電位儀 (Zeta potential measurement) 38 2-2-6. Light scattering/fluorescence microscope Olympus IX70 with CytoViva Adapter (Aetos Technologies, Inc., Auburn, AL, USA) 38 2-2-7. X光電子能譜儀 (X-ray photoelectron Spectrometer,ESCA or XPS) 38 2-2-8. 誘導耦合電漿原子放射光譜儀 (ICP-AES) 38 第三章 具標定功能之修飾雙股DNA攜帶雙重抗癌藥之金奈米棒之合成與應用 39 3-1. 研究動機與目的 39 3-2. 合成與應用具標定功能之修飾雙股DNA攜帶雙重抗癌藥之金奈米棒 45 3-2-1. 合成金奈米棒(Au rod) 45 3-2-2. 修飾單股DNA於金奈米棒(Au rod@ssDNA) 45 3-2-3. 修飾雙股DNA於金奈米棒(Au rod@dsDNA) 46 3-2-4. 定量雙股DNA 47 3-2-4. 修飾Pt(IV)-prodrug於雙股DNA金奈米棒上 48 3-2-5. 嵌入Doxorubicin於接有Pt(IV)-prodrug之雙股DNA金奈米棒(Au rod@dsDNA-Pt(IV)/Dox) 49 3-2-6. 修飾Anti-EGFR於嵌有Doxorubicin和接上Pt(IV)-prodrug之雙股DNA金奈米棒(Au rod @ dsDNA- Pt(IV)/Dox- anti_EGFR) 50 3-2-7. A549癌細胞培養與照射近紅外光釋放藥物之細胞毒性測試 50 3-2-8. Au rod@dsDNA-Pt(IV)/Dox之穩定度測試 51 3-2-9. Au rod@dsDNA-Pt(IV)/Dox在不同水溫下進行藥物釋放 52 3-2-10. Au rod@dsDNA-Pt(IV)/Dox照射連續式近紅外光雷射光進行藥物釋放 53 3-3. 實驗結果與討論 54 3-3-1. Au rod@dsDNA-Pt(IV)/Dox之物理化學分析:TEM、FTIR、UV-Vis、Zeta-potential和CV。 54 3-3-3. Au rod@dsDNA-Pt(IV)修飾抗體進行細胞標定 68 3-3-2. Au rod@dsDNA-Pt(IV)/Dox之穩定度測試 72 3-3-3. Au rod@dsDNA-Pt(IV)/Dox於不同水溫/雷射強度下釋放藥物 74 3-3-3. Au rod@dsDNA-Pt(IV)/Dox之細胞毒性 78 3-4. 結論 87 第四章 參考文獻 88

    1. Z. L. Wang, J. M. Petroski, T. C. Green, M. A. El-Sayed, Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. J. Phys. Chem. B,1998, 102, 6145.
    2. J. P´erez-Juste, I. Pastoriza-Santos, L. M. Liz-Marz´an, P. Mulvaney, Gold nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901.
    3. C. R. Martin, Nanomaterials: A Membrane-Based Synthetic Approach. Science, 1994, 266, 1961-1966.
    4. C. R. Martin, Membrane-Based Synthesis of Nanomaterials. Chem. Mater. 1996, 8, 1739-1746.
    5. Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 1997, 101, 6661-666.
    6. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, The Shape Transition of Gold Nanorods. Langmuir, 1999, 15, 701-709.
    7. M. T. Reetz, W. Helbig, Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401-7402.
    8. N. R. Jana, L. Gearheart, C. J. Murphy, Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater. 2001, 13, 2313-2322.
    9. N. R. Jana, L. Gearheart, C. J. Murphy, Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir, 2001, 17, 6782-6786.
    10. R. Weissleder, A Clearer Vision for in vivo Imaging. Nat. Biotechnol.
    , 2001, 19, 316.
    11. S. E. Lee, G. L Liu, F. Kim, L. P. Lee, Remote Optical Switch for Localized and Selective Control of Gene Interference. Nano Lett. 2009, 9, 562-570.
    12. A. Wijaya, S. B. Schaffer, I. G. Pallares, K. Hamad-Schifferli, Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS nano, 2009, 3, 80-86.
    13. C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.-C. Wu, DNA−Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by Near Infrared Irradiation. J. Am. Chem. Soc. 2006, 128, 3709-3715.
    14. X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
    15. G. V. Maltzahn, J.-H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, S. N. Bhatia, Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas. Cancer Res. 2009, 69, 3892-3900.
    16. D. Mirskaa, K. Schirmerb, S. S. Funaric, A. Langnerb, B. Dobnerb, G. Brezesinskia, Biophysical and Biochemical Properties of a Binary Lipid Mixture for DNA Transfection. Colloids Surf., B : Biointerfaces, 2005, 40, 51–59.
    17. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997, 277, 1078-1080.
    18. R. A. Reynolds, C. A. Mirkin, R. L. Letsinger, Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides. J. Am. Chem. Soc. 2000, 122, 3795-3796.
    19. H. Takahashi, Y. Niidome, S. Yamada, Controlled Release of Plasmid DNA from Gold Nanorods Induced by Pulsed Near-Infrared Light. Chem. Commun. 2005, 2247–2249.
    20. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J.-X. Cheng, Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Adv. Mater. 2007, 19, 3136–3141.
    21. Y. Min, C. Mao, D. Xu, J. Wang, Y. Liu, Gold Nanorods for Platinum Based Prodrug Delivery. Chem. Commun. 2010, 46, 8424–8426.
    22. T. S Hauck, A. A. Ghazani, W. C. W. Chan, Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake, Toxicity, and Gene Expression in Mammalian Cells. Small, 2008, 4, 153 – 159.
    23. R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, T. L. Sabo-Attwood, Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas
    aeruginosa, with Gold Nanorods. Nano Lett. 2008, 8, 302-306.
    24. C. Grabinski, N. Schaeublin, A. Wijaya, H. D’Couto, S. H. Baxamusa, K. Hamad-Schifferli, S. M. Hussain, Effect of Gold Nanorod Surface Chemistry on Cellular Response. ACS nano, 2011, 5, 2870-2879.
    25. Y. Zhao, B. G. Trewyn, I. I. Slowing, V. S.-Y. Lin, Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. J. Am. Chem. Soc. 2009, 131, 8398–8400.
    26. T. Zhao, H. Wu, S. Q. Yao, Q.-H. Xu, G. Q. Xu, Nanocomposites Containing Gold Nanorods and Porphyrin-Doped Mesoporous Silica with Dual Capability of Two-Photon Imaging and Photosensitization. Langmuir, 2010, 26, 14937–14942.
    27. I. E. Sendroiu, M. E. Warner, R. M. Corn, Fabrication of Silica-Coated Gold Nanorods Functionalized with DNA for Enhanced Surface Plasmon Resonance Imaging Biosensing Applications. Langmuir, 2009, 25, 11282–11284.
    28. A. K. Oyelere, P. C. Chen, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Peptide-Conjugated Gold Nanorods for Nuclear Targeting. Bioconjugate Chem. 2007, 18, 1490-1497.
    29. J. Zhu, L. Huang, J. Zhao, Y. Wang, Y Zhao, L. Hao, Y. Lu, Shape Dependent Resonance Light Scattering Properties of Gold Nanorods. Mater. Sci. Eng., B, 2005, 121, 199–203.
    30. I. H. El-Sayed, X. Huang, M. A. El-Sayed, Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer, Nano Lett. 2005, 5, 829-834.
    31. C. J Orendorff, S. C Baxter, E. C Goldsmith, C. J Murphy, Light Scattering from Gold Nanorods:Tracking Material Deformation. Nanotechnology, 2005, 16, 2601–2605.
    32. X. Guo, B. He, C. Sun, T. Huang, K. Liew, H. Liu, Platinum Nanoparticle-Based Assay for Proteins by Resonance Light Scattering, Spectrosc. Lett. 2009, 42, 28–34.
    33. P. Bao, A. G. Frutos, C. Gree, J. Lahiri, U. Muller, T. C. Peterson, L. Warden, Xinying Xie, High-Sensitivity Detection of DNA Hybridization on Microarrays Using Resonance Light Scattering, Anal. Chem. 2002, 74, 1792-1797.
    34. Z. Ma, L. Tian, T. Wang, C. Wang, Optical DNA Detection Based on Gold Nanorods Aggregation. Anal. Chim. Acta, 2010, 673, 179–184.
    35. N. Xiao, C. Yu, Rapid-Response and Highly Sensitive Noncross-Linking Colorimetric Nitrite Sensor Using 4-Aminothiophenol Modified Gold Nanorods. Anal. Chem. 2010, 82, 3659–3663.
    36. T. E. Pylaev, V. A. Khanadeev, B. N. Khlebtsov, L. A. Dykman, V. A. Bogatyrev, N. G. Khlebtsov, Colorimetric and Dynamic Light Scattering Detection of DNA Sequences by Using Positively Charged Gold Nanospheres: A Comparative Study with Gold Nanorods. Nanotechnology, 2011,22, 285501.
    37. F.-M. Li, J.-M. Liu, X.-X. Wang, L.-P. Lin, W.-L. Cai, X. Lin, Y.-N. Zeng, Z.-M. Li, S.-Q. Lin, Non-aggregation Based Label Free Colorimetric Sensor for the Detection of Cr (VI) Based on Selective Etching of Gold Nanorods. Sens. Actuators, B , 2011, 155, 817–822.
    38. Y.-H. Chien, C.-C. Huang, S.-W. Wang, C.-S. Yeh, Synthesis of Nanoparticles: Sunlight Formation of Gold Nanodecahedra for Ultra-sensitive Lead-ion Detection, Green Chem. 2011, 13, 1162-1166.
    39. S. Watanabe, H. Seguchi, K. Yoshida, K. Kifune, T. Tadaki, H. Shiozaki, Colorimetric Detection of Fluoride Ion in an Aqueous Solution Using a Thioglucose-capped Gold Nanoparticle, Tetrahedron Letters, 2005, 46, 8827–8829.
    40. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nture, 1996, 382, 607-609.
    41. F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J. D. Yuen, B. B. Y. Hsu, A. J. Heeger, K. W. Plaxco. Colorimetric Detection of DNA, Small Molecules, Proteins, and Ions Using Unmodified Gold Nanoparticles and Conjugated Polyelectrolytes. PNAS, 2010, 107, 24, 10837-10841.
    42. J. R. Kalluri, T. Arbneshi, S. A. Khan, A. Neely, P. Candice, B. Varisli, M. Washington, S. McAfee, B. Robinson, S. Banerjee, A. K. Singh, D. Senapati, P. C. Ray, Use of Gold Nanoparticles in a Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay: Selective Detection of Arsenic in Groundwater. Angew. Chem. Int. Ed. 2009, 48, 9668 –9671.
    43. F.-Y. Cheng, C.-H. Su, P.-C. Wu, C.-S.Yeh, Multifunctional Polymeric Nanoparticles for Combined Chemotherapeuticand Near-Infrared Photothermal Cancer Therapy In Vitro and In Vivo. Chem. Commun. 2010, 46, 3167-3169.
    44. T. S. Hauck, T. L. Jennings, T. Yatsenko, J. C. Kumaradas, W. C. W. Chan, Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia., Adv. Mater. 2008, 20, 3832-3838.
    45. J.Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S.Suh, Y.-M. Huh, S. Haam, Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human EpithelialCancer. Adv. Mater. 2009, 21, 4339-4342.
    46. Y. Jin, X. Gao, Spectrally Tunable Leakage-Free Gold Nanocontainers. J. Am. Chem. Soc. 2009, 131, 17774-17776.
    47. J. You, G. Zhang, C. Li, Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release. ACS Nano, 2010, 4, 1033-1041.
    48. L. Hirsch, R. Stafford, R. J. Bankson, J. A. Sershen, S. R. Rivera, B. Price, R. E. Hazle, J. D. Halas, N. J. West, Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. PNAS 2003, 100, 13549-13554.
    49. M. S.Yavuz, Y. Cheng, J. Chen, C. M.Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, Y. Xia, Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light. Nat. Mater. 2009, 8, 935-939.
    50. K.-W. Hu, T.-M. Liu, K.-Y. Chung, K.-S. Huang, C. T. Hsieh, C.-K. Sun, C.-S. Yeh, Efficient Near-IR Hyperthermia and Intense Nonlinear Optical Imaging Contrast on the Gold Nanorod-in-Shell Nanostructures. J. Am. Chem. Soc. 2009, 131, 14186-14187.
    51. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, Drastic Reduction of Plasmon Damping in Gold Nanorods. Phys. Rev. Lett. 2002, 88, 077402(4).
    52. C. J. Murphy, T. K.San, A. M. Gole, Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications., J. Phys. Chem. B, 2005, 109, 13857–70.
    53. P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–48.
    54. M. Hu, J. Y. Chen, Z. Y. Li, Gold Nanostructures:Engineering Their Plasmonic Properties for Biomedical Applications. Chem. Soc. Rev. 2006, 35, 1084–94.
    55. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, PEG-modified Gold Nanorods with a Stealth Character for in vivo Aapplications. J. Control. Release , 2006, 114, 343–347.
    56. T. Niidome, Y. Akiyama, M. Yamagata, T. Kawano, T. Mori, Y. Niidome, Y. Katayama, Poly(ethylene glycol)-modified Gold Nanorods as a Photothermal Nanodevice for Hyperthermia. J. Biomater. Sci. Polym. Ed., 2009, 20, 1203–1215.
    57. T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, Y. Niidome, In Vivo Monitoring of Intravenously Injected Gold Nanorods Using Near-infrared Light. Small, 2008 ,4, 1001–1007.
    58. L. Tong, Q. Wei, A. Wei, J.-X. Cheng, Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects. Photochem. Photobiol. 2009, 85, 21–32.
    59. R. Cortesi, E. Esposito, E. Menegatti, R. Gambari, C Nastruzzi, Effect of Cationic Liposome Composition on in vitro Cytotoxicity and Protective Effect on Carried DNA., Int. J. Pharm. 1996, 139, 69–78.
    60. S. Nayak, L. A. Lyon, Soft Nanotechnology with Soft Nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 7686 – 7708.
    61. Y. Bae, T. A. Diezi, A. Zhao, G. S. Kwon, Mixed Polymeric Mmicelles for Combination Cancer Chemotherapy Through the Concurrent Delivery of Multiple Chemotherapeutic Agents. J. Controlled Release, 2007, 122, 324–330.
    62. B. P. Timko, T. Dvir, D. S. Kohane, Remotely Triggerable Drug Delivery Systems. Adv. Mater. 2010, 22, 4925-4943.
    63. H. Takahashi, Y. Niidome, S. Yamada, Controlled Release of Plasmid DNA from Gold Nanorods Induced by Pulsed Near-Infrared Light. Chem. Commun. 2005, 2247-2249.
    64. A. Shiotani, T. Mori, T. Niidome, Y. Niidome, Y. Katayama, Stable Incorporation of Gold Nanorods into N-Isopropylacrylamide Hydrogels and Their Rapid Shrinkage Induced by Near-Infrared Laser Irradiation. Langmuir, 2007, 23, 4012-4018.
    65. Q. Wei, J. Ji, J. Shen, Synthesis of Near-Infrared Responsive Gold Nanorod/PNIPAAm Core/Shell Nanohybrids via Surface Initiated ATRP for Smart Drug Delivery. Macromol. Rapid Commun. 2008, 29, 645–650.
    66. T. Kawano, Y. Niidome, T. Mori, Y. Katayama, T. Niidome, PNIPAM Gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-Infrared Laser. Bioconjugate Chem. 2009, 20, 209–212.
    67. H. Kang, A. C. Trondoli, G. Zhu, Y. Chen, Y.-J. Chang, H. Liu, Y-F. Huang, X. Zhang, W. Tan, Near-Infrared Light-Responsive Core_Shell Nanogels for Targeted Drug Delivery. ACS nano, 2011, 5094-5099.
    68. L. Kelland, The Resurgence of Platinum-based Cancer Chemotherapy. Nat. Rev. Cancer, 2007, 7, 573-584.
    69. T. Boulikas, A. Pantos, E. Bellis, P. Christofis, Designing Platinum Compounds in Cancer: Structures and Mechanisms. Cancer Therapy, 2007, 5, 537-583.
    70. R. N. Bose, L. Maurmann, R. J. Mishur, L. Yasui, S. Gupta, W. S. Grayburn, H. Hofstetter, T. Salley, Non-DNA-binding Platinum Anticancer Agents: Cytotoxic Activities of Platinum–phosphato Complexes towards Human Ovarian Cancer Cells. PNAS, 2008, 105,18314-18319.
    71. M. D. Hall, H. R. Mellor, R. Callaghan, T. W. Hambley, Basis for Design and Development of Platinum(IV) Anticancer Complexes. J. Med. Chem. 2007, 50, 3403-3411.
    72. M. D. Hall, S. Amjadi, M. Zhang, P. J. Beale, T. W. Hambley. The Mechanism of Action of Platinum(IV) Complexes in Ovarian Cancer Cell Lines. J. Inorg. Biochem. 2004, 98, 1614–1624.
    73. S. Bisht, A. Maitra, Dextran–doxorubicin/chitosan Nanoparticles for Solid Tumor Therapy. WIREs Nanomedicine and Nanobiotechnology, 2009, 1, 415-425.
    74. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer. Nanocarriers as an Emerging Platform for Cancer Therapy. Nature nanotechnology, 2007, 2, 751-760.
    75. S. Dhar, W. L. Daniel, D. A. Giljohann, C. A. Mirkin, S. J. Lippard, Polyvalent Oligonucleotide Gold Nanoparticle Conjugates as Delivery Vehicles for Platinum(IV) Warheads. J. AM. CHEM. SOC. 2009, 131, 14652–14653.
    76. S. Dhar, Z. Liu, J. Thomale, H. Dai, S. J. Lippard. Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device. J. Am. Chem. Soc. 2008, 130, 11467–11476.
    77. N. Kolishetti, S. Dhar, P. M. Valencia, L. Q. Lin, R. Karnik, S. J. Lippard, R. Langer, O. C. Farokhzad. Engineering of Self-assembled Nanoparticle Platform for Precisely Controlled Combination Drug Therapy. PNAS, 2010, 107, 17939–17944.
    78. C. Bailly, D. Suh, M. J. Waring, J. B. Chaires, Binding of Daunomycin to Diaminopurine- and/or Inosine-Substituted DNA. Biochemistry, 1998, 37, 1033-1045.
    79. R. Martinez, L. Chacon-Garcia, The Search of DNA-Intercalators as Antitumoral Drugs: What it Worked and What did not Work. Current Medicinal Chemistry, 2005, 12, 127-151.
    80. J. L. Nitiss, Targeting DNA Topoisomerase II in Cancer Chemotherapy. Nature Reviews Cancer, 2009, 9, 338-350.
    81. D. N. Waterhouse, P. G. Tardi, L. D. Mayer, M. B. Bally, A Comparison of Liposomal Formulations of Doxorubicin with Drug Administered in Free Form. Drug Safety, 2001, 24, 903-920.
    82. D. Kim, Y. Y. Jeong, S. Jon, A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS nano, 2010, 4, 3689-3696.
    83. M. Prabaharan, J. J. Grailer, S. Pilla, D. A. Steeber, S. Gong, Gold Nanoparticles with a Monolayer of Doxorubicin-conjugated Amphiphilic Block Copolymer for Tumor-targeted Drug Delivery. Biomaterials, 2009, 30, 6065–6075.
    84. B. Asadishad, M. Vossoughi, I. Alamzadeh, In vitro Release Behavior and Cytotoxicity of Doxorubicin-loaded Gold Nanoparticles in Cancerous Cells. Biotechnol Lett. 2010, 32, 649–654.
    85. A. Agarwal, M. A. Mackey, M. A. El-Sayed, R. V. Bellamkonda, Remote Triggered Release of Doxorubicin in Tumors by Synergistic Application of Thermosensitive Liposomes and Gold Nanorods. ACS nano, 2011, 4919-4926.
    86. A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, J. F. Rusling, Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery. ACS nano, 2009, 3, 307-316.
    87. I. Winer, S. Wang, Y.-E. K. Lee, W. Fan, Y. Gong, D. Burgos-Ojeda, G. Spahlinger, R. Kopelman, R. J. Buckanovich1, F3-Targeted Cisplatin-Hydrogel Nanoparticles as an Effective Therapeutic That Targets Both Murine and Human Ovarian Tumor Endothelial Cells In vivo. Cancer Res. 2010, 70, 8674-8683.
    88. C. Xu, B. Wang, S. Sun, Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery. J. Am. Chem. Soc. 2009, 131, 4216–4217.
    89. S. Dhara, F. X. Gu, R. Langer, O. C. Farokhzad, S. J. Lippard, Targeted Delivery of Cisplatin to Prostate Cancer Cells by Aptamer Functionalized Pt(IV) prodrug-PLGA–PEG Nanoparticles, PNAS, 2008, 105, 17356–17361.
    90. G. B. Braun, A. Pallaoro, G. Wu, D. Missirlis, J. A. Zasadzinski, M. Tirrell, N. O. Reich, Laser-Activated Gene Silencing via Gold Nanoshell siRNA Conjugates. ACS nano, 2007, 3, 2007-2015.
    91. S. Febvay, D. M. Marini, A. M. Belcher, D. E. Clapham, Targeted Cytosolic Delivery of Cell-Impermeable Compounds by Nanoparticle-Mediated, Light-Triggered Endosome Disruption. Nano Lett. 2010, 10, 2211–2219.
    92. D. Nielsen, P. Dombernowsky, S. K. Larsen, O. P. Hansen, T. Skovsgaard, Epirubicin or Epirubicin and Cisplatin as First-line therapy in Advanced Breast Cancer.A Phase III Study. Cancer Chemother. Pharmacol, 2000, 46, 459-466.
    93. O. Lyass, A. Hubert, A. A. Gabizon, Phase I Study of Doxil-Cisplatin Combination Chemotherapy in Patients with Advanced Malignancies. Clin Cancer Res, 2001, 7, 3040-3046.
    94. C.-M. J. Hu, S. Aryal, L. Zhang, Nanoparticle-assisted Combination Therapies
    for Effective Cancer Treatment. Therapeutic Delivery, 2010, 1, 323–334.
    95. S.-M. Lee, T. V. O’Halloran, S. T. Nguyen, Polymer-Caged Nanobins for Synergistic Cisplatin-Doxorubicin Combination Chemotherapy. J. Am. Chem. Soc. 2010, 132, 17130–17138.
    96. C. Yu, L. Varghese, J. Irudayaraj, Surface Modification of Cetyltrimethylammonium Bromide-Capped Gold Nanorods to Make Molecular Probes. Langmuir, 2007, 23, 9114-9119.
    97. V. Bagalkot, O. C. Farokhzad, R. Langer, S. Jon. An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angew. Chem. Int. Ed. 2006, 45, 8149 –8152.
    98. H. Ihmels, D. Otto, Intercalation of Organic Dye Molecules into Double-Stranded DNA –General Principles and Recent Developments. Top Curr. Chem. 2005, 258, 161–204.
    99. Y.-J. Schneider, R. Baurain, A. Zenebergh, A. Trouet, DNA-Binding Parameters of Daunorubicin and Doxorubicin in the Conditions Used for Studying the Interaction of Anthracycline-DNA Complexes with Cells in vitro. Cancer Chemother. Pharmacol. 1979, 2, 7-10.
    100. Y.-F. Xin, L.-L. Wana, J.-L. Peng, C. Guo, Alleviation of the Acute Doxorubicin-induced Cardiotoxicity by Lycium Barbarum Polysaccharides through the Suppression of Oxidative Stress. Food Chem. Toxicol. 2001, 49, 259–264.
    101. H.-F. Hsu, Y.-C. Wu, L.-C. Chen, J.-Y. Houng, Induction of Apoptosis of A549 Lung Cancer Cell Line by Dehydrocostus Lactone Isolated from Glossogyne Tenuifolia. J. Food Drug Anal., 2009, 17, 107-115.

    下載圖示 校內:2013-08-08公開
    校外:2013-08-08公開
    QR CODE