| 研究生: |
黃崇銘 Huang, Chung-Ming |
|---|---|
| 論文名稱: |
數位孿生導入社會住宅提高管理維護效能研究 Application of Digital Twin to Improve Social Housing Facility Management Efficiency |
| 指導教授: |
鄭泰昇
Jeng, Tay-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 數位孿生 、建築管理維護 、建築資訊模型 、社會住宅 |
| 外文關鍵詞: | Digital Twin, Usage Phase, BIM, Social Housing |
| 相關次數: | 點閱:167 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年在勞工減少、環保意識提高及成本上漲的產業趨勢下,促進了AEC產業數位轉型,透過科技來減少過程中的資源浪費。BIM作為產業數位化的基礎,2014年起行政院即積極導入BIM於各項公共建設中,其中12萬戶新建的社會住宅更是導入應用的重點場域。面對逐漸興建完成的社會住宅如何在低人力及成本下,進行有效的管理以提供舒適宜居的住宅空間將是下一階段的挑戰。而本研究注意到近年開始進入AEC產業的數位孿生透過BIM結合物聯網及雲端作業,提供了BIM邁入管理維護階段進行系統整合及流程加速的機會,因此藉由導入數位孿生進入社會住宅管理維護,探討其提升社會住宅管理維護效能的可能。
數位孿生是物理資產、流程或系統的數位化的動態同步模型,藉由對即時同步數據的分析,來提供改善決策效能等機會。本研究以社會住宅管理維護階段的困難點切入,分析並組織可能的程式系統需求並進行實作,而後透由實作的過程整理目前數位孿生在建置與使用可能的機會及障礙,最後提出未來科技發展更成熟後系統可以為社會住宅管理維護帶來的助益。
透過對社會住宅管理維護階段應用智慧化工具的目的及當前管理維護流程的綜合分析,擷取適合的程式底層資料結構,並透過開發環境的選擇、感測資料的即時同步及最後整體應用程式的開發。發現數位孿生導入社會住宅管理維護階段,可以帶來三個主要的效益:1.設計及施工階段的建築資訊可以完整傳遞;2.提供建築管理維護資訊數據的整合3.提供遠端監控管理,但目前數位孿生的應用環境仍在開發成熟中,現階段使用仍有技術支援不足、使用門檻高及需統一技術標準等問題,有待技術發展成熟後才能提供以BIM為基礎建立的數位孿生進入管理維護階段中實際應用及提高使用效益,但透由實作的過程,已初步證明在現有的BIM基礎下,導入數位孿生將具提高整體工作流程的效能。
本研究分析社會住宅在管理維護上可能面臨的困難點,探討基於BIM發展的數位孿生導入該場域管理維護階段可能的需求,並透過實作進行應用程式的開發,主要的研究貢獻分為三個部分,第一是探討數位孿生導入社會住宅管理維護系統,分析當前潛在的問題提出可應用數位孿生改善的系統原型與探討數位孿生導入該階段可能帶來的效益;第二是探討數位孿生導入產業流程,以AEC產業的角度分析社會住宅的建築生命週期各階段需求,探討數位孿生導入的工作流程;第三是實作原型過程的綜合分析,探討以BIM為基礎結合感測技術進行的數位孿生原型開發實作,了解目前使用數位孿生的限制及後續可能的發展方向等。期待能作為後續研究的參考,支持更多數位孿生在建築管理維護階段的探討。
This research explores whether BIM-based digital twins can improve the workflow efficiency and understand the current possible obstacles in development by entering the stage of social housing management and maintenance, and then analyzes the organization and system of social housing management and maintenance to find the key points suitable for the application of digital twin intervention, to develop the system prototype and then develop and implement.
Through the implementation of discovery, digital twin can integrate the data of the design, construction, usage stage, provide a more complete and clearer visual interface for the integration of building information, so as to improve the efficiency of relevant user information interpretation, and provide big data analysis tools to assist decision-making efficiency. Effective remote control improves maintenance quality and efficiency and provides more convenient user feedback channels.
研究文獻:
Agostinelli, S., Cumo, F., Guidi, G., & Tomazzoli, C. (2021). Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence. Energies, 14(8). doi:10.3390/en14082338
Akanmu, A., Anumba, C., & Ogunseiju, O. (2021). Towards next generation cyber-physical systems and digital twins for construction. Journal of Information Technology in Construction, 26, 505-525. doi:10.36680/j.itcon.2021.027
Al-Saeed, Y., Edwards, D. J., & Scaysbrook, S. (2020). Automating construction manufacturing procedures using BIM digital objects (BDOs). Construction Innovation, 20(3), 345-377. doi:10.1108/CI-12-2019-0141
Alshammari, K., Beach, T., & Rezgui, Y. (2021). Cybersecurity for digital twins in the built environment: Current research and future directions. Journal of Information Technology in Construction, 26, 159-173. doi:10.36680/j.itcon.2021.010
Angjeliu, G., Coronelli, D., & Cardani, G. (2020). Development of the simulation model for Digital Twin applications in historical masonry buildings: The integration between numerical and experimental reality. Computers & Structures, 238, 106282. doi:https://doi.org/10.1016/j.compstruc.2020.106282
Azhar, S. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry,(2011) Leadership and Management in Engineering, 11 (3). In.
Bass, B., New, J., & Copeland, W. (2021). Potential Energy, Demand, Emissions, and Cost Savings Distributions for Buildings in a Utility’s Service Area. Energies, 14(1). doi:10.3390/en14010132
Bastos Porsani, G., Del Valle de Lersundi, K., Sánchez-Ostiz Gutiérrez, A., & Fernández Bandera, C. (2021). Interoperability between Building Information Modelling (BIM) and Building Energy Model (BEM). Applied Sciences, 11(5). doi:10.3390/app11052167
Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. doi:https://doi.org/10.1016/j.autcon.2020.103179
Bosch-Sijtsema, P., Claeson-Jonsson, C., Johansson, M., & Roupe, M. (2021). The hype factor of digital technologies in AEC. Construction Innovation, 21(4), 899-916. doi:10.1108/CI-01-2020-0002
Committee, N. B. S. P. (2007). National building information modeling standard, version 1, Part 1: Overview, principles, and methodologies. National Institutute of Building Sciences.
Coupry, C., Noblecourt, S., Richard, P., Baudry, D., & Bigaud, D. (2021). BIM-Based Digital Twin and XR Devices to Improve Maintenance Procedures in Smart Buildings: A Literature Review. Applied Sciences, 11(15). doi:10.3390/app11156810
Demianenko, M., & De Gaetani, C. I. (2021). A Procedure for Automating Energy Analyses in the BIM Context Exploiting Artificial Neural Networks and Transfer Learning Technique. Energies, 14(10). doi:10.3390/en14102956
Eastman, C., Lividini, J., & Stoker, D. (1975). A database for designing large physical systems. Paper presented at the Proceedings of the May 19-22, 1975, national computer conference and exposition, Anaheim, California. https://doi.org/10.1145/1499949.1500073
Eastman, C. M., & Siabiris, A. (1995). A generic building product model incorporating building type information. Automation in Construction, 3(4), 283-304. doi:https://doi.org/10.1016/0926-5805(94)00028-L
Greif, T., Stein, N., & Flath, C. M. (2020). Peeking into the void: Digital twins for construction site logistics. Computers in Industry, 121, 103264. doi:https://doi.org/10.1016/j.compind.2020.103264
Grieves, M. (2016). Origins of the Digital Twin Concept.
Grieves, M., & Vickers, J. (2017). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In F.-J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches (pp. 85-113). Cham: Springer International Publishing.
Hasan, S. M., Lee, K., Moon, D., Kwon, S., Jinwoo, S., & Lee, S. (2022). Augmented reality and digital twin system for interaction with construction machinery. Journal of Asian Architecture and Building Engineering, 21(2), 564-574. doi:10.1080/13467581.2020.1869557
He, R., Li, M., Gan, V. J. L., & Ma, J. (2021). BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. Journal of Cleaner Production, 278, 123505. doi:https://doi.org/10.1016/j.jclepro.2020.123505
Hu, W., Zhang, T., Deng, X., Liu, Z., & Tan, J. (2021). Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges. Journal of Intelligent Manufacturing and Special Equipment, 2(1), 1-34. doi:10.1108/JIMSE-12-2020-010
Jiang, F., Ma, L., Broyd, T., & Chen, K. (2021). Digital twin and its implementations in the civil engineering sector. Automation in Construction, 130, 103838. doi:https://doi.org/10.1016/j.autcon.2021.103838
Kaewunruen, S., & Lian, Q. (2019). Digital twin aided sustainability-based lifecycle management for railway turnout systems. Journal of Cleaner Production, 228, 1537-1551. doi:https://doi.org/10.1016/j.jclepro.2019.04.156
Kaewunruen, S., Peng, S., & Phil-Ebosie, O. (2020). Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations. Sustainability, 12(19). doi:10.3390/su12197873
Kaewunruen, S., Sresakoolchai, J., Ma, W., & Phil-Ebosie, O. (2021). Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability, 13(4). doi:10.3390/su13042051
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016-1022. doi:https://doi.org/10.1016/j.ifacol.2018.08.474
Kvamsdal, A. R. a. O. S. a. T. (2019). Digital Twin: Values, Challenges and Enablers.
Lee, D., & Lee, S. (2021). Digital Twin for Supply Chain Coordination in Modular Construction. Applied Sciences, 11(13). doi:10.3390/app11135909
Liang, C.-J., Kamat, V. R., & Menassa, C. C. (2020). Teaching robots to perform quasi-repetitive construction tasks through human demonstration. Automation in Construction, 120, 103370. doi:https://doi.org/10.1016/j.autcon.2020.103370
Lin, Y.-C., & Cheung, W.-F. (2020). Developing WSN/BIM-Based Environmental Monitoring Management System for Parking Garages in Smart Cities. Journal of Management in Engineering, 36(3), 04020012. doi:doi:10.1061/(ASCE)ME.1943-5479.0000760
Liu, Y., Sun, Y., Yang, A., & Gao, J. (2021). Digital Twin-Based Ecogreen Building Design. Complexity, 2021, 1391184. doi:10.1155/2021/1391184
Love, P. E. D., & Matthews, J. (2019). The ‘how’ of benefits management for digital technology: From engineering to asset management. Automation in Construction, 107, 102930. doi:https://doi.org/10.1016/j.autcon.2019.102930
Lu, Q., Parlikad Ajith, K., Woodall, P., Don Ranasinghe, G., Xie, X., Liang, Z., . . . Schooling, J. (2020). Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. Journal of Management in Engineering, 36(3), 05020004. doi:10.1061/(ASCE)ME.1943-5479.0000763
Lu, Q., Parlikad, A. K., Woodall, P., Ranasinghe, G. D., Xie, X., Liang, Z., . . . Schooling, J. (2020). Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. Journal of Management in Engineering, 36(3), 05020004. doi:doi:10.1061/(ASCE)ME.1943-5479.0000763
Lu, Q., Xie, X., Heaton, J., Parlikad, A. K., & Schooling, J. (2020, 2020//). From BIM Towards Digital Twin: Strategy and Future Development for Smart Asset Management. Paper presented at the Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future, Cham.
Lu, Q., Xie, X., Parlikad, A. K., Schooling, J. M., & Konstantinou, E. (2020). Moving from building information models to digital twins for operation and maintenance. Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction, 174(2), 46-56.
Lydon, G. P., Caranovic, S., Hischier, I., & Schlueter, A. (2019). Coupled simulation of thermally active building systems to support a digital twin. Energy and Buildings, 202, 109298. doi:https://doi.org/10.1016/j.enbuild.2019.07.015
Madni, A. M., Madni, C. C., & Lucero, S. D. (2019). Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems, 7(1), 7. Retrieved from https://www.mdpi.com/2079-8954/7/1/7
Mannino, A., Moretti, N., Dejaco, M., Luciano, B., & Re Cecconi, F. (2019). Office building occupancy monitoring through image recognition sensors. 9, 371-380. doi:10.2495/SAFE-V9-N4-371-380
Meža, S., Mauko Pranjić, A., Vezočnik, R., Osmokrović, I., & Lenart, S. (2021). Digital Twins and Road Construction Using Secondary Raw Materials. Journal of Advanced Transportation, 2021, 8833058. doi:10.1155/2021/8833058
Min, D., Menassa, C. C., & Kamat, V. R. (2021). From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. Journal of Information Technology in Construction (ITcon).
O’Grady, T. M., Brajkovich, N., Minunno, R., Chong, H.-Y., & Morrison, G. M. (2021). Circular Economy and Virtual Reality in Advanced BIM-Based Prefabricated Construction. Energies, 14(13). doi:10.3390/en14134065
Oliveira, P. P. (2020). Digital twin development for airport management. Journal of Airport Management, 14(3), 246-259. Retrieved from https://www.ingentaconnect.com/content/hsp/cam/2020/00000014/00000003/art00004
Opoku, D.-G. J., Perera, S., Osei-Kyei, R., & Rashidi, M. (2021). Digital twin application in the construction industry: A literature review. Journal of Building Engineering, 40, 102726. doi:https://doi.org/10.1016/j.jobe.2021.102726
Opoku, D.-G. J., Perera, S., Osei-Kyei, R., Rashidi, M., Famakinwa, T., & Bamdad, K. (2022). Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings, 12(2), 113. Retrieved from https://www.mdpi.com/2075-5309/12/2/113
Ozturk, G. B. (2021). Digital Twin Research in the AECO-FM Industry. Journal of Building Engineering, 40, 102730. doi:https://doi.org/10.1016/j.jobe.2021.102730
Peng, Y., Zhang, M., Yu, F., Xu, J., & Gao, S. (2020). Digital Twin Hospital Buildings: An Exemplary Case Study through Continuous Lifecycle Integration. Advances in Civil Engineering, 2020, 8846667. doi:10.1155/2020/8846667
Sepasgozar, S. M. E. (2020). Digital Twin and Web-Based Virtual Gaming Technologies for Online Education: A Case of Construction Management and Engineering. Applied Sciences, 10(13). doi:10.3390/app10134678
Sepasgozar, S. M. E. (2021). Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings, 11(4). doi:10.3390/buildings11040151
Sepasgozar, S. M. E., Ghobadi, M., Shirowzhan, S., Edwards, D. J., & Delzendeh, E. (2021). Metrics development and modelling the mixed reality and digital twin adoption in the context of Industry 4.0. Engineering, Construction and Architectural Management, 28(5), 1355-1376. doi:10.1108/ECAM-10-2020-0880
Sepasgozar, S. M. E., Hui, F. K., Shirowzhan, S., Foroozanfar, M., Yang, L., & Aye, L. (2021). Lean Practices Using Building Information Modeling (BIM) and Digital Twinning for Sustainable Construction. Sustainability, 13(1). doi:10.3390/su13010161
Shahzad, M., Shafiq, M. T., Douglas, D., & Kassem, M. (2022). Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings, 12(2), 120. Retrieved from https://www.mdpi.com/2075-5309/12/2/120
Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital Twin: Origin to Future. Applied System Innovation, 4(2), 36. Retrieved from https://www.mdpi.com/2571-5577/4/2/36
Soliman, S. (2019). Organizational smooth shifting towards BIM and Lean implementation.
Steyn, W., & Broekman, A. (2021). Development of a digital twin of a local road network: A case study. Journal of Testing and Evaluation, 51. doi:10.1520/JTE20210043
Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 15(4), 2405-2415. doi:10.1109/TII.2018.2873186
Tran, H., Nguyen, T. N., Christopher, P., Bui, D.-K., Khoshelham, K., & Ngo, T. D. (2021). A digital twin approach for geometric quality assessment of as-built prefabricated façades. Journal of Building Engineering, 41, 102377. doi:https://doi.org/10.1016/j.jobe.2021.102377
Wu, J., Yang, Y., Cheng, X., Zuo, H., & Cheng, Z. (2020, 6-8 Nov. 2020). The Development of Digital Twin Technology Review. Paper presented at the 2020 Chinese Automation Congress (CAC).
Züst, S., Züst, R., Züst, V., West, S., Stoll, O., & Minonne, C. (2021). A graph based Monte Carlo simulation supporting a digital twin for the curatorial management of excavation and demolition material flows. Journal of Cleaner Production, 310, 127453. doi:https://doi.org/10.1016/j.jclepro.2021.127453
內政部. (2021). 社會住宅興辦計畫.
內政部建築研究所委託研究報告. (2019). 社會住宅應用智慧化管理之研究.
內政部營建署. (2018). 社會住宅規劃設計興建及營運管理作業參考手冊. 內政部營建署.
交通部鐵道局. (2019). 「鐵道工程BIM作業指引研訂」 委託技術服務案報告書_鐵道工程BIM作業指引. 交通部鐵道局.
周光宙. (2020). 我國社會住宅工程全生命週期應用BIM概況及推動策略. 財團法人台灣建築中心.
財團法人台灣建築中心、台灣建築資訊模型協會. (2016). 建築資訊建模 BIM 建築設計樣板(1.0 版) 操作手冊.
陳太農、陳柏宗. (2019). 社會住宅應用智慧化管理之研究. 內政部建築研究所委託研究報告.
臺北市政府. (2018). 臺北市公共住宅智慧社區建置參考手冊.
臺北市政府都市發展局. (2018). 臺北市政府都市發展局主辦建築工程建築資訊建模(BIM) 竣工模型屬性資料作業規範.
臺南市政府都市發展局. (2020). 109年度-臺南市-社會住宅先期規劃結案報告書(永康區橋北段).
網頁資料:
中華民國內政部,(2020),推動多元居住政策。https://www.moi.gov.tw/cp.aspx?n=286#:~:text=內政部為推動社會,民眾及代為管理。
行政院, (2016), 落實居住正義中央地方合作推動社會住宅政策。https://www.ey.gov.tw/Page/448DE008087A1971/668d00a5-295c-4b86-9f6a-777a90effad9
AECMAGAZING,(2021), Autodesk Tandem – digital twins in the cloud。https://aecmag.com/technology/autodesk-tandem-digital-twins-in-the-cloud/