| 研究生: |
謝博鈞 Hsieh, Po Chun |
|---|---|
| 論文名稱: |
以3D列印技術進行銅基金屬智慧模具之研發 Development of 3D Printing Techniques to Fabricate Copper Based Metallic Smart Molds |
| 指導教授: |
劉浩志
Liu, Bernard Haochih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 3D printing 、熔融沉積法 、低熔點合金 、錫合金 、射出成形 |
| 外文關鍵詞: | 3D printing, fused deposition modeling, low melting alloy, tin alloy |
| 相關次數: | 點閱:121 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
3D列印又稱為積層製造(Additive Manufacturing),是將三維的立體結構透過電腦輔助工程軟體(Computer Aided Engineering Software)轉變為二維的層狀結構,並透過層層堆疊的過程,由下往上逐層建構出物體之形貌。此種技術可製作出傳統加工技術無法製作之結構,例如內流道、中空鏤空結構等。本研究將開發改進積層製造之技術並應用其優勢於隱形眼鏡壓鑄模金屬模具之製造,並在其中導入傳統加工技術無法製造之異型冷卻水路設計,並以脫蠟鑄造方式製作之。
熔融沉積法(Fused Deposition Modeling)為積層製造技術的其中一種,其使用之材料限制為高分子、或金屬粉末/高分子複合材。本研究克服此項材料限制,使用低熔點錫合金材料直接進行Z方向堆疊與製造XY平面,製造相較於高分子材料有更高強度之結構。其結果顯示,由於金屬的黏度相較於高分子低非常多,造成擠出時成型性的控制不易。而是否能成功的製造,其中一關鍵在於層與層之間能否相互熔融,形成層間無間隙的層狀結構,而擠出時層與層間介面互相熔融與否與工作溫度具有相當之關係。隨著工作溫度的提高,有更多的熱量可於介面間傳遞,增加介面互相熔融之效果。除此之外從微結構之觀察也得知,隨著工作溫度的提高,其晶粒也可由較為脆性之樹枝狀晶轉變為強度較佳之球狀晶。
於模具方面,本研究藉由電腦輔助設計軟體(Computer Aided Design)設計隱形眼鏡壓鑄模用之射出模仁,並以模流分析軟體Moldex3D 對吾人之設計進行產品模擬與分析,針對模擬的結果做出模具與冷卻水路之調整,嘗試提高整個射出成型製程中之冷卻效率,提升產品的良率與縮短製程週期。然而其結果顯示,藉由吾人設計之異型冷卻水路之使用,模具冷卻效率明確的提高,但是由於產品之體積不大且設計並不算複雜,整體冷卻時間並無明顯的改善。故未來於 此類異型冷卻水路的使用方面,須將產品體積納入考量,以發揮最大功效。吾人亦於模具設計完畢之後,使用3D列印技術配合脫蠟鑄造,製作前述所設計之隱形眼鏡壓鑄模之射出模仁。此射出成形模仁未來將用於實際射出成形試驗。
Fused deposition modeling is one of additive manufacturing techniques which limited the material using in polymers. In order to create a stronger structure, we used low melting point tin alloy as feedstocks and fabricated in Z direction and XY plane. We found that metal is harder to get a good formability because of its low viscosity. The key to accumulate successfully is to extrude a layer structure without gaps between each layer. Rising working temperature provides more heat transfer during extrusion between layers which not only eliminate the formation of gaps but also turn the microstructure from brittle dendritic grains into stronger globular grains.
For designing a smart mold for injection molding with a conformal cooling channel in it, computer aided design software is applied. With the help of simulation software of injection molding process, we analyzed the result and adjusted our mold design immediately to get a better cooling efficiency. However, though the higher cooling efficiency is reached, there is no improvement in shortening the cooling time because the volume of the product is too small to show the advantage of conformal cooling channel.
After the mold design is done and simulation, we used brass material to fabricate the injection mold by the combination of 3D printing technique and investment casting process. The brass mold will be used to do the injection molding in the future.
1. "A third industrial revolution," The Economist, 2012.
2. Azari and S. Nikzad, "The evolution of rapid prototyping in dentistry: a review," Rapid Prototyping Journal, vol. 15, pp. 216-225, 2009.
3. Campbell, D. Bourell, and I. Gibson, "Additive manufacturing: rapid prototyping comes of age," Rapid Prototyping Journal, vol. 18, pp. 255-258, 2012.
4. N. Guo and M. C. Leu, "Additive manufacturing: technology, applications and research needs," Frontiers of Mechanical Engineering, vol. 8, pp. 215-243, 2013.
5. D. L. Cohen, J. I. Lipton, M. Cutler, D. Coulter, A. Vesco, and H. Lipson, "Hydrocolloid printing: A novel platform for customized food production," Solid Freeform Fabrication Symposium (SFF'09), 2009.
6. Cheah, C.M., et al., Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. The International Journal of Advanced Manufacturing Technology, 2005. 25(3-4): p. 308-320.
7. Kumar, S., Selective laser sintering: A qualitative and objective approach. JOM, 2003.55(10): p. 43-47.
8. Khaing, M.W., J.Y.H. Fuh, and L. Lu, Direct metal laser sintering for rapid tooling: processing and characterization of EOS parts. Journal of Materials Processing Technology, 2001. 113(1-3): p. 269-272 .
9. Karapatis, N.P., J.P.S. van Griethuysen, and R. Glardon, Direct rapid tooling: a review of current research. Rapid Prototyping Journal, 1998. 4(2): p.77-89.
10. 林敬智等人,雷射積層製造技術於塑膠射出模具產業之應用,機械工業雜誌359期,工研院。2013.
11. ASTM, ASTM F2792-12A StandardTerminology for Additive Manufacturing Techniques. 2015.
12. Lore Thijs, Frederik Verhaeghe, Tom Craeghs, Jean-Pierre Kruth, “A study of the microstructural evolution during selective laser melting of Ti–6Al–4V”, Acta Materialia 58(9):3303-3312 • May 2010.
13. Bey Vrancken, Lore Thijs, Jean-Pierre Kruth, Jan Van Humbeeck,“Heat treatment of Ti6Al4V produced by Selective Laser Melting Microstructure and mechanical properties”. Journal of Alloys and Compounds 541(541):177-185 • November 2012.
14. Weihui Wu, Yongqiang Yang, Yanlu Huang, “direct manufacturing of Cu-based alloy parts by selective laser melting.”Chin. Opt. Lett., 2007, 05(01): pp.37-40-4.
15. Prashanth K G, B Dibalina, Zhi Wang, “Tribological and corrosion properties of Al-12Si produced by selective laser melting.” Journal of Materials Research 29(17) • June 2014.
16. Nikzad, M., et al., Thermal-Mechanical Properties of a Metal-filled Polymer Composite for Fused Deposition Modelling Applications, in 5th Australasian Congress on Applied Mechanics, Brisbane, Australia. ACAM 2007.
17. Masood, S.H. and W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling. Materials & Design, 2004. 25(7): p. 587-594.
18. Hartkop, D. The World’s First Desktop 3D Printing for Metal Is Market Ready. 2015.
19. 彭軼暉, Moldex3D/eDesign 模流分析技術與應用,科盛科技. 2009.
20. Emanuel, S., et al., Progress on Tooling by 3D Printing; Conformal Cooling, Dimensional Control, Surface Finish and Hardness. Solid Freedom Fabrication Proceedings, 1997: p. 115-124.
21. Armillotta, A., R. Baraggi, and S. Fasoli, SLM tooling for die casting with conformal cooling channels. Inernational Journal of Advanced Manufacturing Technology, 2014.
22. Sachs, E., et al., Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polymer Engineering & Science, 2000.
23. Zheng Zong, Zhang Hai-ou, Wang Gui-lan, Qian ying-ping, Finite element analysis on the injection molding and productivity of conformal cooling channel. Jounal of Shanghai Jiaotong University, 2011.
24. 邱傳聖, 鑄造學: 高立圖書有限公司, 1997.
25. 賴耿陽, 精密鑄造技術-脫蠟.陶模.石膏模: 復漢出版社, 1983.
26. 林宗獻, 精密鑄造: 全華科技圖書股份有限公司, 2004.
27. E. Chica, S. Agudelo, N. Sierra, Lost wax casting process of the runner of a propeller turbine for small hydroelectric power plants. Renewable Energy, 2013.
28. Somlak Wannarumon & Erik L. J. Bohez, “Rapid Prototyping and Tooling Technology in Jewelry CAD”, Computer-Aided Design & Applications (Computer-Aided Design & Ap;2004, Vol. 1 Issue 1-4, p569.
29. Paul L, Valint Jr, al., Method for treating plastic mold pieces, Patent US 5681510A.
30. Hongwen Li, Dominic V, Ruscio, Yu Chin Lai, Horngyih Huang, ”Lens molds with protective coatings for production of contact lenses and other ophthalmic products”, Patent US 6565776.
31. 陳武宏, 精密鑄造應用實務: 全華科技圖書股份有限公司, 1989.
32. Zhang, X.P., et al., Creep and fatigue behaviors of the lead-free Sn-Ag-Cu-Bi and Sn60Pb40 solder interconnections at elevated temperatures. Journal of Materials Science-Materials in Electronics, 2007. 18(6): p. 665-670.
33. Xu, X.,“Applied Meta-Analysis of Lead-Free Solder Reliability.” Master Thesis ARIZONA STATE UNIVERSITY,2014.
34. Jorge Mireles, Ho-Chan Kim, David Espalin, Fancisco Medina, “Development of Fused deposition modeling system for low melting Temperature Metal Alloys”, Journal of Electronic Packaging, March 2013.
35. 蔡承翔, Design and fabrication of smart mold with conformal cooling channel by fused deposition modeling of metal,碩士論文, National Cheng Kung University, 2015.
36. Oren Breslouer, Rayleigh-Plateau instability: Falling Jet; Analysis and Application, Princeton University, 2010.
37. Jorge M., David E., David R., Bob Z., Francisco M., Ryan W.,” Fused Deposition Modeling of Metal”, 2012.
38. Merton C Flemings, Behavior of Metal Alloys in the Semisolid State, Metall. Trans. B. 22, 1991, 269–293.
39. 張永彥, 塑膠模具設計學-理論、實務、製圖、設計(修訂三版), 全華圖書股份有限公司, 2007.
40. 專業塑膠射出成形-CAE實戰應用與問題剖析: 科盛科技股份有限公司, 2013.
41. Zhang, L., et al., Design of ultrasonic transmitters with defined frequency characteristics for wireless pressure sensing in injection molding. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2005. 52(8): p. 1360-1371.
42. Hsieh, Y.F., Optimization of cooling Channel lay-out for Wedge-Shaped Light Guide Plate, in Institute of Mold and Die Engineering. 國立高雄應用科技大學, 2011.
43. Mayer, S., Optimised mold temperature control procedure using DMLS.
44. 林明宗, 鑄造學: 長諾圖書公司1993.