| 研究生: |
蔡翊琦 Tsai, Yi-Chi |
|---|---|
| 論文名稱: |
含雙色胺酸功能區氧化還原酶在第一型干擾素訊號傳遞路徑中的調控性角色 The regulatory role of WW domain-containing oxidoreductase in type I interferon signaling pathway |
| 指導教授: |
徐麗君
Hsu, Li-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 腫瘤抑制因子 、訊息傳遞 、先天免疫 、發炎 |
| 外文關鍵詞: | tumor suppressor, signal transduction, innate immunity, inflammation |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在病毒感染時,被感染的細胞會釋出第一型干擾素 (interferons, IFNs) 來引起JAK-STAT訊號傳遞路徑的活化以促進抗病毒反應。當第一型IFNs與其接受器IFN-α receptor (IFNAR) 結合後,會活化下游JAK1及TYK2以吸引STAT1與STAT2聚集,進一步促使STAT1和STAT2蛋白質磷酸化。磷酸化後的STAT1和STAT2會形成異二聚體,移行入核引起干擾素刺激基因 (IFN-stimulated genes, ISGs) 的轉錄,藉以活化抗病毒反應。雖然第一型干擾素對於宿主對抗病毒感染是極有益處的,但第一型干擾素訊號傳遞路徑若過度活化,也會造成自體免疫疾病及免疫失調。為了維持良好的抗病毒功效及避免免疫疾病,細胞對第一型干擾素訊號傳遞路徑的調節是極為重要的。我們實驗室最近發現腫瘤抑制因子「含雙色胺酸功能區氧化還原酶」(WW domain-containing oxidoreductase, WWOX)會抑制腸病毒A71型和單純疱疹病毒-1的感染,但是WWOX是否調控第一型干擾素刺激細胞的訊號傳遞路徑依然是未知的。在此篇研究中,我們證實了在WWOX缺乏的細胞中,第一型干擾素介導的JAK1和STAT1蛋白質磷酸化,比起對照組,都有顯著的增加,顯示WWOX在第一型干擾素訊號傳遞路徑中扮演著調控性的角色。總結而言,我們的結果顯示WWOX在調控IFN-α訊號傳遞路徑中扮演了重要的調控角色,釐清WWOX對於第一型干擾素訊號傳遞路徑的調控將可以在瞭解WWOX於免疫系統中的功能提供全新的觀點。
In viral infection, the infected cells release type I interferons (IFNs) to trigger Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling pathways for induction of antiviral responses. The engagement of type I IFNs with IFN-α receptor (IFNAR) activates JAK1 and tyrosine kinase 2 (TYK2) for recruitment and phosphorylation of both STAT1 and STAT2. The phosphorylated STAT1 and STAT2 form heterodimers, translocate to the nucleus and initiate the transcription of IFN-stimulated genes (ISGs) to stimulate antiviral responses. Although type I IFNs benefit host defense against virus infection, prolonged activation of type I IFN signaling has been shown to cause autoimmune diseases and immune dysregulation. To achieve proper antiviral responses and avoid immune pathogenesis, the modulation of type I IFN signaling is important. Tumor suppressor WW domain-containing oxidoreductase (WWOX) has been recently shown to suppress both enterovirus A71 and herpes simplex virus-1 infection in our laboratory. Nevertheless, whether WWOX regulates type I IFN signaling during virus infection remains unknown. In this study, we demonstrated that IFN-α-induced protein phosphorylation of JAK1 and STAT1 was increased in WWOX-knockdown cells as compared with the control cells, indicating a regulating role of WWOX in type I IFN signaling pathway. Together, our results suggest that WWOX plays an important role in regulating IFN-α-induced signaling pathway. Delineating the regulation of type I IFN signaling pathway by WWOX will provide a novel impact on the understanding of WWOX function in the immune system.
1. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005, 5(5): 375-386.
2. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 2014, 32: 513-545.
3. McNab F, Mayer-Barber K, Sher A, Wack A, O'garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015, 15(2): 87-103.
4. Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, Welch M, et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 2013, 340(6129): 207-211.
5. Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, Cheng G, et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 2013, 340(6129): 202-207.
6. Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2018, 27(12): 1984-2009.
7. Zhang D, Wlodawer A, Lubkowski J. Crystal Structure of a Complex of the Intracellular Domain of Interferon lambda Receptor 1 (IFNLR1) and the FERM/SH2 Domains of Human JAK1. J Mol Biol 2016, 428(23): 4651-4668.
8. Lupardus PJ, Ultsch M, Wallweber H, Bir Kohli P, Johnson AR, Eigenbrot C. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc Natl Acad Sci U S A 2014, 111(22): 8025-8030.
9. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014, 14(1): 36-49.
10. Porritt RA, Hertzog PJ. Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol 2015, 36(3): 150-160.
11. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003, 3(11): 900-911.
12. Murphy JM, Tannahill GM, Hilton DJ, Greenhalgh CJ. The negative regulation of JAK/STAT signaling. Handbook of cell signaling. Elsevier, 2010, pp 467-480.
13. Gauzzi MC, Velazquez L, McKendry R, Mogensen KE, Fellous M, Pellegrini S. Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J Biol Chem 1996, 271(34): 20494-20500.
14. Zhou Y-J, Hanson EP, Chen Y-Q, Magnuson K, Chen M, Swann PG, et al. Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Natl Acad Sci U S A 1997, 94(25): 13850-13855.
15. Liu KD, Gaffen SL, Goldsmith MA, Greene WC. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Curr Biol 1997, 7(11): 817-826.
16. Feng J, Witthuhn BA, Matsuda T, Kohlhuber F, Kerr IM, Ihle JN. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 1997, 17(5): 2497-2501.
17. Garg M, Wahid M, Khan FD. Regulation of peripheral and central immunity: Understanding the role of Src homology 2 domain-containing tyrosine phosphatases, SHP-1 & SHP-2. Immunobiology 2020, 225(1): 151847.
18. Feng G-S, Hui C-C, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993, 259(5101): 1607-1611.
19. Plutzky J, Neel BG, Rosenberg RD. Isolation of a src homology 2-containing tyrosine phosphatase. Proc Natl Acad Sci U S A 1992, 89(3): 1123-1127.
20. David M, Chen HE, Goelz S, Larner AC, Neel BG. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 1995, 15(12): 7050-7058.
21. You M, Yu DH, Feng GS. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 1999, 19(3): 2416-2424.
22. Hu H, Sun SC. Ubiquitin signaling in immune responses. Cell Res 2016, 26(4): 457-483.
23. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998, 67: 425-479.
24. Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007, 7(6): 454-465.
25. Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 1999, 18(5): 1309-1320.
26. Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, et al. VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 2004, 18(24): 3055-3065.
27. Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ, et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci U S A 1999, 96(5): 2071-2076.
28. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 2000, 60(8): 2140-2145.
29. Li J, Liu J, Ren Y, Yang J, Liu P. Common Chromosomal Fragile Site Gene WWOX in Metabolic Disorders and Tumors. Int J Biol Sci 2014, 10(2): 142-148.
30. Aqeilan RI, Palamarchuk A, Weigel RJ, Herrero JJ, Pekarsky Y, Croce CM. Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2γ transcription factor. Cancer Res 2004, 64(22): 8256-8261.
31. Chang N-S, Pratt N, Heath J, Schultz L, Sleve D, Carey GB, et al. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 2001, 276(5): 3361-3370.
32. Aqeilan RI, Pekarsky Y, Herrero JJ, Palamarchuk A, Letofsky J, Druck T, et al. Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 2004, 101(13): 4401-4406.
33. Salah Z, Bar-Mag T, Kohn Y, Pichiorri F, Palumbo T, Melino G, et al. Tumor suppressor WWOX binds to ΔNp63 α and sensitizes cancer cells to chemotherapy. Cell Death Dis 2013, 4(1): e480-e480.
34. Aqeilan RI, Donati V, Gaudio E, Nicoloso MS, Sundvall M, Korhonen A, et al. Association of Wwox with ErbB4 in breast cancer. Cancer Res 2007, 67(19): 9330-9336.
35. Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, et al. WW domain–containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 2005, 65(15): 6764-6772.
36. Jin C, Ge L, Ding X, Chen Y, Zhu H, Ward T, et al. PKA-mediated protein phosphorylation regulates ezrin–WWOX interaction. Biochem Biophys Res Commun 2006, 341(3): 784-791.
37. Ludes-Meyers JH, Kil H, Bednarek AK, Drake J, Bedford MT, Aldaz CM. WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene 2004, 23(29): 5049-5055.
38. Gaudio E, Palamarchuk A, Palumbo T, Trapasso F, Pekarsky Y, Croce CM, et al. Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res 2006, 66(24): 11585-11589.
39. Chang N-S, Doherty J, Ensign A. JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem 2003, 278(11): 9195-9202.
40. Sze C-I, Su M, Pugazhenthi S, Jambal P, Hsu L-J, Heath J, et al. Down-regulation of WW domain-containing oxidoreductase induces tau phosphorylation in vitro a potential role in ALZHEIMER'S disease. J Biol Chem 2004, 279(29): 30498-30506.
41. Wang H-Y, Juo L-I, Lin Y, Hsiao M, Lin J, Tsai C, et al. WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3 β. Cell Death Differ 2012, 19(6): 1049-1059.
42. Guo W, Wang G, Dong Y, Guo Y, Kuang G, Dong Z. Decreased expression of WWOX in the development of esophageal squamous cell carcinoma. Mol Carcinog 2013, 52(4): 265-274.
43. Kuroki T, Yendamuri S, Trapasso F, Matsuyama A, Aqeilan RI, Alder H, et al. The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res 2004, 10(7): 2459-2465.
44. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, Hauck WW, et al. The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma: Correlations with clinical features. Cancer 2004, 100(8): 1605-1614.
45. Johannsen J, Kortüm F, Rosenberger G, Bokelmann K, Schirmer MA, Denecke J, et al. A novel missense variant in the SDR domain of the WWOX gene leads to complete loss of WWOX protein with early-onset epileptic encephalopathy and severe developmental delay. neurogenetics 2018, 19(3): 151-156.
46. Tabarki B, AlHashem A, AlShahwan S, Alkuraya FS, Gedela S, Zuccoli G. Severe CNS involvement in WWOX mutations: description of five new cases. Am J Med Genet A 2015, 167(12): 3209-3213.
47. Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 2002, 27(5): 235-241.
48. Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 2002, 22(10): 3316-3326.
49. Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 2007, 13(1): 12-22.
50. Xu D, Qu CK. Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 2008, 13: 4925-4932.
51. Kim H, Frederick DT, Levesque MP, Cooper ZA, Feng Y, Krepler C, et al. Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Rep 2015, 11(9): 1458-1473.
52. Tang J, Tu S, Lin G, Guo H, Yan C, Liu Q, et al. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med 2020, 217(4).
53. Babon JJ, Lucet IS, Murphy JM, Nicola NA, Varghese LN. The molecular regulation of Janus kinase (JAK) activation. Biochem J 2014, 462(1): 1-13.
54. Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammaren H, Yamashita K, et al. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nat Struct Mol Biol 2014, 21(7): 579-584.
55. Ferrao R, Wallweber HJ, Ho H, Tam C, Franke Y, Quinn J, et al. The Structural Basis for Class II Cytokine Receptor Recognition by JAK1. Structure 2016, 24(6): 897-905.
56. Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 2014, 344(6185): 1249783.
57. Aki D, Li H, Zhang W, Zheng M, Elly C, Lee JH, et al. The E3 ligases Itch and WWP2 cooperate to limit TH2 differentiation by enhancing signaling through the TCR. Nat Immunol 2018, 19(7): 766-775.
58. Liang Q, Ma D, Zhu X, Wang Z, Sun TT, Shen C, et al. RING-Finger Protein 6 Amplification Activates JAK/STAT3 Pathway by Modifying SHP-1 Ubiquitylation and Associates with Poor Outcome in Colorectal Cancer. Clin Cancer Res 2018, 24(6): 1473-1485.
59. Zhang J, Wu H, Yi B, Zhou J, Wei L, Chen Y, et al. RING finger protein 38 induces gastric cancer cell growth by decreasing the stability of the protein tyrosine phosphatase SHP-1. FEBS Lett 2018, 592(18): 3092-3100.