簡易檢索 / 詳目顯示

研究生: 蔡宜霖
Tsai, Yi-Lin
論文名稱: CCN1在主動脈瘤鈣化中的角色
The role of CCN1 in aortic aneurysm calcification
指導教授: 莫凡毅
Mo, Fan-E
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 59
中文關鍵詞: CCN1血管鈣化主動脈瘤整合素?6?1
外文關鍵詞: CCN1, calcification, aneurysm, integrin ????
相關次數: 點閱:64下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腹主動脈瘤(AAA)是一種嚴重的慢性血管疾病,其特徵是由於主動脈壁的局部受損造成腹主動脈膨脹。而在AAA中若發生主動脈鈣化,會導致主動脈變硬,同時鈣化也顯著增加AAA破裂的風險,造成高死亡率。在探討血管鈣化機制中,血管平滑肌細胞(VSMC)是關鍵角色,VSMC可以藉由從收縮態(contractile)轉變為成骨態(osteogenic)來調控血管鈣化影響血管重塑。CCN1 (Cellular communication network factor 1)是一種基質細胞蛋白,可以透過與不同的整合素結合來調節不同細胞活動,包括細胞增殖、分化、遷移、黏附、凋亡和老化。我們先前的研究表明,CCN1會透過結合整合素α6β1參與AAA形成,從而促進發炎和氧化壓力。我們推測CCN1也會參與在血管鈣化中,藉由與整合素α6β1結合去調控VSMC的成骨轉化,從而促進AAA的鈣化。為了探討這個假設,我們使用高濃度鈣離子(+ 1.8 mM 氯化鈣) 培養基建立體外VSMC鈣化模型,使用茜素紅(ARS)染色確認VSMC鈣化。透過西方墨點法檢測到CCN1會在給予氯化鈣後1小時內被誘導,在12小時後下降;而成骨基因 RUNX2 在1-12小時內升高,去分化基因 KLF4 在3小時後被誘導,這些結果顯示高濃度鈣處理促使VSMC轉變為成骨態。為了測試CCN1是否透過整合素α6β1影響VSMC鈣化,我們使用特定的拮抗劑T1 peptide來阻斷CCN1和整合素α6β1之間的結合。結果顯示使用30 μM T1 peptide處理可以有效抑制VSMC鈣化,顯著降低RUNX2和KLF4表達,證實CCN1會透過整合素α6β1調控成骨基因RUNX2和去分化基因 KLF4並促進VSMC鈣化。在動物實驗中我們使用氯化鈣誘導AAA模型在WT 和Ccn1dm/dm小鼠(CCN1上α6β1的結合位點突變導致CCN1無法與α6β1結合)探討CCN1的作用。我們發現Ccn1dm/dm小鼠的AAA形成和鈣化皆受到抑制,同時發現Ccn1dm/dm小鼠中RUNX2缺乏表現,此結果相呼應細胞實驗。我們的研究結果支持針對拮抗CCN1和整合素α6β1相互作用發展新的治療策略,來抑制VSMC成骨分化,從而減輕AAA中血管鈣化負擔。

    Abdominal aortic aneurysm (AAA) is a serious chronic vascular disease characterized by the localized weakening and bulging of the abdominal aorta. Calcification of the vessel wall is associated with arterial stiffening, significantly increasing the risk of rupture. Vascular smooth muscle cells (VSMCs) play a pivotal role in aneurysm formation. The aberrant phenotypic switching of VSMCs from a contractile to an osteogenic-like state is a critical mechanism underlying arterial remodeling and vascular calcification. CCN1 (Cellular communication network factor 1) is a matricellular protein that regulates a variety of cellular activities, including cell proliferation, differentiation, migration, adhesion, apoptosis, and senescence through binding to different integrin receptors. Our previous in vivo data indicate that CCN1 participates in AAA formation via its receptor integrin α6β1 to promote inflammation and oxidative stress. We hypothesized that CCN1 promotes calcification in AAA by modulating osteogenic transformation in VSMCs through activating integrin α6β1 signaling. To test this hypothesis, we established an in vitro VSMC calcification model using high-calcium (+1.8 mM CaCl2) media. Cellular calcification was revealed by Alizarin red S staining. CCN1 protein expression in VSMCs was induced within 1 hour and started to decline 12 hours after CaCl2 treatment, as examined by western blotting. The osteogenic gene Runx2 was elevated between 1-12 hours, and the dedifferentiation marker KLF4 was induced after 3 hours, indicating a reprogramming of VSMCs towards an osteogenic phenotype by CaCl2. To test the requirement of integrin α6β1, a specific antagonistic T1 peptide was used to block the binding between CCN1 and integrin α6β1 during VSMC calcification. T1 peptide (30 μM) effectively inhibited calcification and significantly reduced Runx2 and KLF4 expression, indicating that CCN1 promotes VSMC calcification through integrin α6β1, Runx2, and KLF4 signaling. In an in vivo study, we used the CaCl2-induced AAA model to investigate the role of CCN1 and used Ccn1dm/dm mice, which carry a gene encoding an α6β1-binding deficient CCN1 mutant, to block CCN1 function. We found that AAA formation and calcification were inhibited in Ccn1dm/dm mice compared to WT controls. The absence of Runx2 expression in Ccn1dm/dm mice suggests that CCN1 regulates Runx2 signaling in AAA calcification through binding to integrin α6β1. Our findings indicate that therapeutic strategies targeting the interaction between CCN1 and integrin α6β1 may be effective in modulating VSMC phenotypic switching, thereby reducing the vascular calcification burden in AAA.

    中文摘要 I Abstract III 致謝 V 1 Introduction 1 1.1 Aortic aneurysm 1 1.2 Calcification in AAA 1 1.3 Vascular smooth muscle cell (VSMC) phenotypic modulation in AAA 2 1.4 Transitional transcription factor KLF4 4 1.5 Osteogenic transcription factor Runx2 4 1.6 CCN family 5 1.7 CCN1 5 1.8 Hypothesis 6 2 Materials and Methods 7 2.1 Chemicals 7 2.2 Primary antibodies 8 2.3 Secondary antibodies 9 2.4 Kits 9 2.5 Solution formula 10 2.6 Animals 15 2.7 Isolation and expansion of VSMCs 15 2.8 Calcification assay of VSMCs 16 2.9 ARS staining 17 2.10 Western blotting 17 2.11 Immunofluorescence staining 18 2.12 CaCl2-induced AAA model 19 2.13 Histology 19 2.14 Tissue immunofluorescence staining 20 3 Results 22 3.1 CCN1 was upregulated in VSMC calcification 22 3.2 Phenotypic switching of VSMCs in calcification 22 3.3 CCN1 promoted VSMC calcification through integrin α6β1 23 3.4 Ccn1dm/dm mice displaced less calcification in the CaCl2-induced AAA model. 24 3.5 Ccn1dm/dm mice exhibited reduction in Runx2 expression following CaCl2-induced AAA model. 25 4 Discussion 26 5 References 29 6 Figures 36 Figure 2 Characterization of rat VSMCs. 36 Figure 3 VSMC calcification was induced by CaCl2 treatment after 4 days revealed by ARS staining. 37 Figure 4 VSMC calcification was associated with CCN1 induction and phenotypic switching to an osteogenic phenotype. 39 Figure 5 Disrupting CCN1/α6β1 binding by the antagonistic T1 peptide effectively inhibited VSMC calcification. 41 Figure 6 Disrupting CCN1/α6β1 binding by the antagonistic T1 peptide effectively inhibited osteogenic marker Runx2 level. 43 Figure 7 Disrupting CCN1/α6β1 binding by the antagonistic T1 peptide effectively inhibited transitional marker KLF4 level. 44 Figure 8 Ccn1dm/dm mice have resistant in CaCl2-induced AAA model. 45 Figure 9 Ccn1dm/dm mice displayed the lower calcification in the aortic medial layer in CaCl2-induced AAA model. 47 Figure 10 Ccn1dm/dm mice displayed reduced osteogenic marker Runx2 in CaCl2-induced AAA model. 49

    1.Adhikari, N., Shekar, K. C., Staggs, R., Win, Z., Steucke, K., Lin, Y. W., Wei, L. N., Alford, P., Hall, J. L., & International Society of Cardiovascular Translational, R. (2015). Guidelines for the isolation and characterization of murine vascular smooth muscle cells. A report from the International Society of Cardiovascular Translational Research. J Cardiovasc Transl Res, 8(3), 158-163. https://doi.org/10.1007/s12265-015-9616-6
    2.Alam, M. U., Kirton, J. P., Wilkinson, F. L., Towers, E., Sinha, S., Rouhi, M., Vizard, T. N., Sage, A. P., Martin, D., Ward, D. T., Alexander, M. Y., Riccardi, D., & Canfield, A. E. (2009). Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells. Cardiovasc Res, 81(2), 260-268. https://doi.org/10.1093/cvr/cvn279
    3.Alencar, G. F., Owsiany, K. M., Karnewar, S., Sukhavasi, K., Mocci, G., Nguyen, A. T., Williams, C. M., Shamsuzzaman, S., Mokry, M., Henderson, C. A., Haskins, R., Baylis, R. A., Finn, A. V., McNamara, C. A., Zunder, E. R., Venkata, V., Pasterkamp, G., Bjorkegren, J., Bekiranov, S., & Owens, G. K. (2020). Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. Circulation, 142(21), 2045-2059. https://doi.org/10.1161/CIRCULATIONAHA.120.046672
    4.Buijs, R. V., Willems, T. P., Tio, R. A., Boersma, H. H., Tielliu, I. F., Slart, R. H., & Zeebregts, C. J. (2013). Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg, 46(5), 542-548. https://doi.org/10.1016/j.ejvs.2013.09.006
    5.Chen, C. C., Young, J. L., Monzon, R. I., Chen, N., Todorovic, V., & Lau, L. F. (2007). Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J, 26(5), 1257-1267. https://doi.org/10.1038/sj.emboj.7601596
    6.DuPont, J. J., Kenney, R. M., Patel, A. R., & Jaffe, I. Z. (2019). Sex differences in mechanisms of arterial stiffness. Br J Pharmacol, 176(21), 4208-4225. https://doi.org/10.1111/bph.14624
    7.Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M., & Shanahan, C. M. (2018). Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res, 114(4), 590-600. https://doi.org/10.1093/cvr/cvy010
    8.Engelse, M. A., Neele, J. M., Bronckers, A. L., Pannekoek, H., & de Vries, C. J. (2001). Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis. Cardiovasc Res, 52(2), 281-289. https://doi.org/10.1016/s0008-6363(01)00375-3
    9.Furmanik, M., Chatrou, M., van Gorp, R., Akbulut, A., Willems, B., Schmidt, H., van Eys, G., Bochaton-Piallat, M. L., Proudfoot, D., Biessen, E., Hedin, U., Perisic, L., Mees, B., Shanahan, C., Reutelingsperger, C., & Schurgers, L. (2020). Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification. Circ Res, 127(7), 911-927. https://doi.org/10.1161/CIRCRESAHA.119.316159
    10.Gao, J., Cao, H., Hu, G., Wu, Y., Xu, Y., Cui, H., Lu, H. S., & Zheng, L. (2023). The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther, 8(1), 55. https://doi.org/10.1038/s41392-023-01325-7
    11.Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., Komm, B. S., Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem, 280(39), 33132-33140. https://doi.org/10.1074/jbc.M500608200
    12.Genova, E., Cavion, F., Lucafo, M., Leo, L., Pelin, M., Stocco, G., & Decorti, G. (2019). Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World J Stem Cells, 11(12), 1020-1044. https://doi.org/10.4252/wjsc.v11.i12.1020
    13.Hsu, P. L., Chen, J. S., Wang, C. Y., Wu, H. L., & Mo, F. E. (2019). Shear-Induced CCN1 Promotes Atheroprone Endothelial Phenotypes and Atherosclerosis. Circulation, 139(25), 2877-2891. https://doi.org/10.1161/CIRCULATIONAHA.118.033895
    14.Ikegame, M., Tabuchi, Y., Furusawa, Y., Kawai, M., Hattori, A., Kondo, T., & Yamamoto, T. (2016). Tensile stress stimulates the expression of osteogenic cytokines/growth factors and matricellular proteins in the mouse cranial suture at the site of osteoblast differentiation. Biomed Res, 37(2), 117-126. https://doi.org/10.2220/biomedres.37.117
    15.Jun, J. I., & Lau, L. F. (2011). Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov, 10(12), 945-963. https://doi.org/10.1038/nrd3599
    16.Klopf, J., Fuchs, L., Schernthaner, R., Domenig, C. M., Gollackner, B., Brostjan, C., Neumayer, C., & Eilenberg, W. (2022). The prognostic impact of vascular calcification on abdominal aortic aneurysm progression. J Vasc Surg, 75(6), 1926-1934. https://doi.org/10.1016/j.jvs.2021.11.062
    17.Lai, C. H., Shi, G. Y., Lee, F. T., Kuo, C. H., Cheng, T. L., Chang, B. I., Ma, C. Y., Hsu, F. C., Yang, Y. J., & Wu, H. L. (2013). Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice. Ann Surg, 258(6), 1103-1110. https://doi.org/10.1097/SLA.0b013e31827df7cb
    18.Leow, K., Szulc, P., Schousboe, J. T., Kiel, D. P., Teixeira-Pinto, A., Shaikh, H., Sawang, M., Sim, M., Bondonno, N., Hodgson, J. M., Sharma, A., Thompson, P. L., Prince, R. L., Craig, J. C., Lim, W. H., Wong, G., & Lewis, J. R. (2021). Prognostic Value of Abdominal Aortic Calcification: A Systematic Review and Meta-Analysis of Observational Studies. J Am Heart Assoc, 10(2), e017205. https://doi.org/10.1161/JAHA.120.017205
    19.Leu, S. J., Liu, Y., Chen, N., Chen, C. C., Lam, S. C., & Lau, L. F. (2003). Identification of a novel integrin alpha 6 beta 1 binding site in the angiogenic inducer CCN1 (CYR61). J Biol Chem, 278(36), 33801-33808. https://doi.org/10.1074/jbc.M305862200
    20.Liang, W.-S. (2022). The role of CCN1 in calcium chloride-induced abdominal aortic aneurysm. [Master's thesis, National Cheng Kung University]. NDLTD in Taiwan. https://hdl.handle.net/11296/3z9ktt
    21.Liu, H., Peng, F., Liu, Z., Jiang, F., Li, L., Gao, S., Wang, G., Song, J., Ruan, E., Shao, Z., & Fu, R. (2017). CYR61/CCN1 stimulates proliferation and differentiation of osteoblasts in vitro and contributes to bone remodeling in vivo in myeloma bone disease. Int J Oncol, 50(2), 631-639. https://doi.org/10.3892/ijo.2016.3815
    22.Miano, J. M., Fisher, E. A., & Majesky, M. W. (2021). Fate and State of Vascular Smooth Muscle Cells in Atherosclerosis. Circulation, 143(21), 2110-2116. https://doi.org/10.1161/CIRCULATIONAHA.120.049922
    23.Mo, F. E., Muntean, A. G., Chen, C. C., Stolz, D. B., Watkins, S. C., & Lau, L. F. (2002). CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol, 22(24), 8709-8720. https://doi.org/10.1128/MCB.22.24.8709-8720.2002
    24.Monsen, V. T., & Attramadal, H. (2023). Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal, 17(2), 371-390. https://doi.org/10.1007/s12079-023-00768-5
    25.Nakayama, A., Morita, H., Hayashi, N., Nomura, Y., Hoshina, K., Shigematsu, K., Ohtsu, H., Miyata, T., & Komuro, I. (2016). Inverse Correlation Between Calcium Accumulation and the Expansion Rate of Abdominal Aortic Aneurysms. Circ J, 80(2), 332-339. https://doi.org/10.1253/circj.CJ-15-1065
    26.Nosoudi, N., Nahar-Gohad, P., Sinha, A., Chowdhury, A., Gerard, P., Carsten, C. G., Gray, B. H., & Vyavahare, N. R. (2015). Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles. Circ Res, 117(11), e80-89. https://doi.org/10.1161/CIRCRESAHA.115.307207
    27.Oh, S. H., Kim, J. W., Kim, Y., Lee, M. N., Kook, M. S., Choi, E. Y., Im, S. Y., & Koh, J. T. (2017). The extracellular matrix protein Edil3 stimulates osteoblast differentiation through the integrin alpha5beta1/ERK/Runx2 pathway. PLoS One, 12(11), e0188749. https://doi.org/10.1371/journal.pone.0188749
    28.Petsophonsakul, P., Furmanik, M., Forsythe, R., Dweck, M., Schurink, G. W., Natour, E., Reutelingsperger, C., Jacobs, M., Mees, B., & Schurgers, L. (2019). Role of Vascular Smooth Muscle Cell Phenotypic Switching and Calcification in Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol, 39(7), 1351-1368. https://doi.org/10.1161/ATVBAHA.119.312787
    29.Pinard, A., Jones, G. T., & Milewicz, D. M. (2019). Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res, 124(4), 588-606. https://doi.org/10.1161/CIRCRESAHA.118.312436
    30.Qian, G., Adeyanju, O., Olajuyin, A., & Guo, X. (2022). Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life (Basel), 12(2). https://doi.org/10.3390/life12020191
    31.Rastogi, V., Stefens, S. J. M., Houwaart, J., Verhagen, H. J. M., de Bruin, J. L., van der Pluijm, I., & Essers, J. (2022). Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne), 9, 814123. https://doi.org/10.3389/fmed.2022.814123
    32.Salmon, M., Gomez, D., Greene, E., Shankman, L., & Owens, G. K. (2012). Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22alpha promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res, 111(6), 685-696. https://doi.org/10.1161/CIRCRESAHA.112.269811
    33.Shanahan, C. M., Crouthamel, M. H., Kapustin, A., & Giachelli, C. M. (2011). Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res, 109(6), 697-711. https://doi.org/10.1161/CIRCRESAHA.110.234914
    34.Shankman, L. S., Gomez, D., Cherepanova, O. A., Salmon, M., Alencar, G. F., Haskins, R. M., Swiatlowska, P., Newman, A. A., Greene, E. S., Straub, A. C., Isakson, B., Randolph, G. J., & Owens, G. K. (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med, 21(6), 628-637. https://doi.org/10.1038/nm.3866
    35.Sun, Y., Byon, C. H., Yuan, K., Chen, J., Mao, X., Heath, J. M., Javed, A., Zhang, K., Anderson, P. G., & Chen, Y. (2012). Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification. Circ Res, 111(5), 543-552. https://doi.org/10.1161/CIRCRESAHA.112.267237
    36.Troisi, N., Bertagna, G., Torri, L., Canovaro, F., D'Oria, M., Adami, D., & Berchiolli, R. (2023). The Management of Ruptured Abdominal Aortic Aneurysms: An Ongoing Challenge. J Clin Med, 12(17). https://doi.org/10.3390/jcm12175530
    37.Wang, Y., Krishna, S., & Golledge, J. (2013). The calcium chloride-induced rodent model of abdominal aortic aneurysm. Atherosclerosis, 226(1), 29-39. https://doi.org/10.1016/j.atherosclerosis.2012.09.010
    38.Wanhainen, A., Verzini, F., Van Herzeele, I., Allaire, E., Bown, M., Cohnert, T., Dick, F., van Herwaarden, J., Karkos, C., Koelemay, M., Kolbel, T., Loftus, I., Mani, K., Melissano, G., Powell, J., Szeberin, Z., Esvs Guidelines, C., de Borst, G. J., Chakfe, N., . . . Verhagen, H. (2019). Editor's Choice - European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur J Vasc Endovasc Surg, 57(1), 8-93. https://doi.org/10.1016/j.ejvs.2018.09.020
    39.Yang, C. Y., Chang, P. Y., Wu, B. S., Tarng, D. C., & Lee, O. K. (2021). Mechanical and chemical cues synergistically promote human venous smooth muscle cell osteogenesis through integrin beta1-ERK1/2 signaling: A cell model of hemodialysis fistula calcification. FASEB J, 35(12), e22042. https://doi.org/10.1096/fj.202101064RR
    40.Yap, C., Mieremet, A., de Vries, C. J. M., Micha, D., & de Waard, V. (2021). Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Kruppel-Like Factor 4). Arterioscler Thromb Vasc Biol, 41(11), 2693-2707. https://doi.org/10.1161/ATVBAHA.121.316600
    41.Yei, K., Mathlouthi, A., Naazie, I., Elsayed, N., Clary, B., & Malas, M. (2022). Long-term Outcomes Associated With Open vs Endovascular Abdominal Aortic Aneurysm Repair in a Medicare-Matched Database. JAMA Netw Open, 5(5), e2212081. https://doi.org/10.1001/jamanetworkopen.2022.12081
    42.Yoshida, T., Yamashita, M., & Hayashi, M. (2012). Kruppel-like factor 4 contributes to high phosphate-induced phenotypic switching of vascular smooth muscle cells into osteogenic cells. J Biol Chem, 287(31), 25706-25714. https://doi.org/10.1074/jbc.M112.361360
    43.Zhu, D., Mackenzie, N. C., Farquharson, C., & Macrae, V. E. (2012). Mechanisms and clinical consequences of vascular calcification. Front Endocrinol (Lausanne), 3, 95. https://doi.org/10.3389/fendo.2012.00095
    44.Zhu, L., Zhang, N., Yan, R., Yang, W., Cong, G., Yan, N., Ma, W., Hou, J., Yang, L., & Jia, S. (2019). Hyperhomocysteinemia induces vascular calcification by activating the transcription factor RUNX2 via Kruppel-like factor 4 up-regulation in mice. J Biol Chem, 294(51), 19465-19474. https://doi.org/10.1074/jbc.RA119.009758

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE