簡易檢索 / 詳目顯示

研究生: 廖宥青
Liao, Yu-Ching
論文名稱: AMPK的活化參與運動在巴金森氏症小鼠模式中的保護作用
AMPK activation involves in the neuroprotective effect of exercise in an MPTP-induced mouse model of Parkinson’s disease
指導教授: 莊季瑛
Chuang, Jih-Ing
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 42
中文關鍵詞: 巴金森氏症運動腺苷單磷酸活化蛋白質激酶二甲雙胍腺苷單磷酸活化蛋白質激酶抑制劑神經保護
外文關鍵詞: Parkinson’s disease, exercise, AMPK, metformin, dorsomorphin, neuroprotection
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巴金森氏症 (Parkinson’s disease, PD)的成因是由於大腦中黑質區多巴胺神經細胞流失所引起的。文獻也指出,粒線體功能障礙導致能量缺乏是造成多巴胺神經細胞死亡的主要原因之一。而在能量缺乏或是代謝壓力的情況下,腺苷單磷酸活化蛋白質激酶 (AMP-activated protein kinase, AMPK)會活化,以維持細胞內的能量恆定。另外,亦有研究顯示運動與二甲雙胍類降血糖藥物metformin治療都能夠活化AMPK,並對PD病患與MPTP誘導之PD小鼠模式有益。這些結果顯示AMPK在PD的致病機制與預防中扮演重要的角色。在本篇研究中,我們想要探討AMPK活性在運動避免MPTP誘導黑質紋狀體多巴胺神經細胞流失和行動失調中的影響。因此,我們使用雄性 C57BL/6小鼠,透過腹腔注射MPTP 建立PD小鼠模型,之後給予跑步機運動訓練四週。跑步前20分鐘會給予AMPK活化劑metformin或抑制劑dorsomorphin。在我們的研究結果顯示運動訓練或metformin處理皆會顯著增加AMPK磷酸化與過氧化體增生劑活化受體γ輔啟動因子-1α (Peroxisome proliferator-activated receptor coactivator-1α, PGC-1α) 蛋白質表現量,並誘發體溫上升。然而,在MPTP誘導PD的小鼠觀察到metformin或dorsomorphin處理會阻斷運動引起的體溫上升與上調PGC-1α表現。此外,四週跑步運動訓練或metformin處理可以避免由MPTP誘發的黑質區多巴胺神經細胞退化與運動功能障礙,而單獨處理metformin則會減弱滾筒式跑步機平衡測試表現。然而在metformin處理的運動小鼠,並未發現運動改善MPTP引起紋狀體多巴胺轉運蛋白表現量下降,且在改善行動功能障礙和挽救多巴胺神經細胞損失沒有加成作用。另外,dorsomorphin處理導致滾筒式跑步機平衡測試表現不佳,黑質紋狀體多巴胺神經細胞顯著的損失,加劇MPTP毒性,並阻礙運動產生的保護神經細胞作用。這些結果闡明適度運動活化AMPK有助於神經保護作用。且AMPK活化劑合併治療 (運動與metformin處理)不僅不具有額外的益處,可能還會減弱各自的保護神經細胞之作用。

    Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons in the substantia nigra. ATP loss induced by mitochondrial dysfunction had been demonstrated to be one of major causes of nigral dopaminergic neurodegeneration. The decrease of ATP levels activates AMP-activated protein kinase (AMPK) to maintain energy homeostasis. On the other hand, exercise training and metformin administration can also activate AMPK and have beneficial effects for PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. These results revealed an important role of AMPK in the pathogenesis and prevention of PD. In the present study, we investigate the effect of AMPK activity on the protective effects of exercise against MPTP-induced nigrostriatal dopaminergic neurodegeneration and motor impairment. Male C57BL/6 mice were injected MPTP (30 mg/kg/day for 5 consecutive days) or vehicle saline and then subjected to treadmill running or not running for 4 weeks. AMPK activator of metformin or inhibitor of dorsomorphin was administrated by intraperitoneal injection 20 minutes before running. Results demonstrated that exercise training or metformin treatment significantly induced AMPK phosphorylation and upregulation of peroxisome proliferator-activated receptor  coactivator-1α (PGC-1α) protein expression and an elevation of body temperature in saline- or MPTP-treated mice. However, the exercise-induced hyperthermia and PGC-1α upregulation were blocked in MPTP mice treated with metformin or dorsomorphin. In addition, 4-week exercise or metformin treatment prevented MPTP-induced nigrostriatal dopaminergic neurodegeneration and motor impairment while metformin itself attenuated rotarod performance. In exercised mice treated with metformin, the exercise-induced protective effect in preventing MPTP-induced downregulation of dopamine transporter in striatum was not found and there was no additive effect in improving motor dysfunction and rescuing nigral dopaminergic neuron loss. Moreover, dorsomorphin treatment induced a poor rotarod performance and significant loss of nigrostriatal dopaminergic neurons, deteriorated MPTP toxicity, and impeded the neuroprotective effects of exercise. These findings elucidate that AMPK activation contributes to the neuroprotective effects of moderate exercise. In addition, the combined treatment of AMPK activators, exercise and metformin, may abrogate respective neuroprotection in MPTP-induced PD mouse model besides no additive benefits.

    Contents 中文摘要…………………………………………………………………………....….Ⅰ Abstract………………………………………………………………………..............Ⅲ 謝辭………………………………………………………………………….…………...Ⅴ Contents……………………………………………………………………….............Ⅵ Introduction……………………………………………………………………….......1 Etiology and pathogenesis of Parkinson's disease ………………..………………….......1 MPTP/MPP+ induced parkinsonian model………………..………………………….......2 The neuroprotective mechanisms of physical exercise………………..……………........3 Regulations and functions of AMP-activated protein kinase (AMPK).…………….........5 The role of AMPK in neurodegenerative diseases…………………………………….....7 AMPK activator and inhibitor……………………………………...………………….....9 Research rationale and hypothesis…………...………………………….....10 Specific aims…………...................................................………………………….....10 Materials and methods……………………………………...…………………...11 Animals……………………………………...………………………..………………...11 Animal temperature logger implantation……………………………..………………...11 Treatment of MPTP…………………....……………………...………………………...12 Treadmill exercise protocol……………………...……………………………………...12 Metformin and dorsomorphin administration……………………...…………………...12 Immunohistochemistry……………………...…………………......................................13 Cell counting and image quantification…...………………….........................................14 Western blot….............................................………………….........................................14 Motor behavior analysis….............................................……………………..................15 Statistical analysis….............................................……………………...........................16 Results…..............................................................……………………...........................17 Treadmill exercise or metformin treatment induces AMPK phosphorylation and PGC-1α upregulation in the substantia nigra........................................………….............................17 The effect of metformin or dorsomorphin on exercise-induced hyperthermia in control and MPTP treated mice........................................………….......……….............................17 Treadmill exercise training or the treatment of metformin but not dorsomorphin alleviates MPTP-induced motor dysfunction.....………......................................................19 Dorsomorphin induces nigrostriatal dopaminergic neurodegeneration and also impedes the neuroprotective effects of exercise against MPTP toxicity.....………...........................19 Discussion......................................................………………………............................21 Summary of our major findings.....................…………………...…...............................21 The role of AMPK under exercise…………...….............................................................21 The relationship between AMPK and body temperature…………….............................22 The role of AMPK on neuroprotection…………………...…..........................................22 Conclusion…………………...….................................................................................25 References…………………...…..................................................................................26 Figure………………………………...…........................................................................33 Fig.1 Scheme of experimental design. ..…...................................................................33 Fig. 2 Treadmill exercise and metformin treatment induces AMPK phosphorylation and PGC1-α upregulation in the substantia nigra. ..................................................................34 Fig. 3 The effects of exercise, metformin and dorsomorphin on body weight in MPTP-treated mice. …………………………………………………………………………….35 Table. 1 The effects of exercise, metformin and dorsomorphin on baseline body temperature in MPTP-treated mice. …………………………………………………….36 Fig. 4 Effects of metformin and dorsomorphin on the exercise-induced hyperthermia. …………………………………………………………………………....37 Fig. 5 Treadmill exercise training or the treatment of metformin but not dorsomorphin alleviates MPTP-induced motor dysfunction. ……………………………………...…...38 Fig. 6 Effect of metformin and dorsomorphin on the exercise-induced improvement of higher foot slip errors after MPTP treatment. ……………………………………...…...39 Fig. 7 Exercise or metformin attenuates MPTP-induced dopamine transporter downregulation in the striatum, but the attenuation was abrogated in exercised mice treated with metformin or dorsomorphin. …………………………………….....................…...40 Fig. 8 Exercise or metformin ameliorates but dorsomorphin deteriorates MPTP-induced nigral dopaminergic neuron loss. …………………………………….....................…....41

    Ahima, R. S. (2016). Principles of energy homeostasis. Metabolic Syndrome: A Comprehensive Textbook, 311-326.
    Austin, S., & St-Pierre, J. (2012). PGC1alpha and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci, 125(Pt 21), 4963-4971.
    Azimi, M., Gharakhanlou, R., Naghdi, N., Khodadadi, D., & Heysieattalab, S. (2018). Moderate treadmill exercise ameliorates amyloid-beta-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1alpha/FNDC5/BDNF pathway. Peptides, 102, 78-88.
    Ballard, P. A., Tetrud, J. W., & Langston, J. W. (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology, 35(7), 949-956.
    Bayliss, J. A., Lemus, M. B., Stark, R., Santos, V. V., Thompson, A., Rees, D. J., et al. (2016). Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease. J Neurosci, 36(10), 3049-3063.
    Blair, S. N., & Brodney, S. (1999). Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc, 31(11 Suppl), S646-662.
    Bosco, D. A., Fowler, D. M., Zhang, Q., Nieva, J., Powers, E. T., Wentworth, P., Jr., et al. (2006). Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol, 2(5), 249-253.
    Choi, J. S., Park, C., & Jeong, J. W. (2010). AMP-activated protein kinase is activated in Parkinson's disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun, 391(1), 147-151.
    Colberg, S. R., Somma, C. T., & Sechrist, S. R. (2008). Physical activity participation may offset some of the negative impact of diabetes on cognitive function. J Am Med Dir Assoc, 9(6), 434-438.
    Coughlan, K. A., Valentine, R. J., Ruderman, N. B., & Saha, A. K. (2014). AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes, 7, 241.
    Coven, D. L., Hu, X., Cong, L., Bergeron, R., Shulman, G. I., Hardie, D. G., et al. (2003). Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab, 285(3), E629-636.
    Curry, D. W., Stutz, B., Andrews, Z. B., & Elsworth, J. D. (2018). Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. J Parkinsons Dis, 8(2), 161-181.
    Dauer, W., & Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron, 39(6), 889-909.
    Garcia, D., Hellberg, K., Chaix, A., Wallace, M., Herzig, S., Badur, M. G., et al. (2019). Genetic Liver-Specific AMPK Activation Protects against Diet-Induced Obesity and NAFLD. Cell Rep, 26(1), 192-208.e196.
    Gibb, W. R., & Lees, A. J. (1991). Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry, 54(5), 388-396.
    Gibson, G. E., Kingsbury, A. E., Xu, H., Lindsay, J. G., Daniel, S., Foster, O. J., et al. (2003). Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease. Neurochem Int, 43(2), 129-135.
    Goldman, S. M. (2014). Environmental toxins and Parkinson's disease. Annu Rev Pharmacol Toxicol, 54, 141-164.
    Gowers, W. R. (1898). A manual of diseases of the nervous system (Vol. 2): P. Blakiston, Son & Company.
    Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., et al. (2007). The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem, 282(41), 30107-30119.
    Grunewald, A., Rygiel, K. A., Hepplewhite, P. D., Morris, C. M., Picard, M., & Turnbull, D. M. (2016). Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol, 79(3), 366-378.
    Handa, N., Takagi, T., Saijo, S., Kishishita, S., Takaya, D., Toyama, M., et al. (2011). Structural basis for compound C inhibition of the human AMP-activated protein kinase alpha2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr, 67(Pt 5), 480-487.
    Hardie, D. G. (2013). AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes, 62(7), 2164-2172.
    Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 13(4), 251-262.
    Herzig, S., & Shaw, R. J. (2018). AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 19(2), 121-135.
    Jacobs, I., & Bell, D. G. (2004). Effects of acute modafinil ingestion on exercise time to exhaustion. Med Sci Sports Exerc, 36(6), 1078-1082.
    Jiang, P., Gan, M., Ebrahim, A. S., Castanedes-Casey, M., Dickson, D. W., & Yen, S. H. (2013). Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of alpha-synuclein oligomers and decrease of neurites. Neurobiol Aging, 34(5), 1504-1515.
    Ju, T. C., Chen, H. M., Lin, J. T., Chang, C. P., Chang, W. C., Kang, J. J., et al. (2011). Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease. J Cell Biol, 194(2), 209-227.
    Kim, J., Yang, G., Kim, Y., Kim, J., & Ha, J. (2016). AMPK activators: mechanisms of action and physiological activities. Exp Mol Med, 48, e224.
    Kim, S. J., Tang, T., Abbott, M., Viscarra, J. A., Wang, Y., & Sul, H. S. (2016). AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue. Mol Cell Biol, 36(14), 1961-1976.
    Kuroiwa, H., Yokoyama, H., Kimoto, H., Kato, H., & Araki, T. (2010). Biochemical alterations of the striatum in an MPTP-treated mouse model of Parkinson's disease. Metab Brain Dis, 25(2), 177-183.
    Labuzek, K., Suchy, D., Gabryel, B., Bielecka, A., Liber, S., & Okopien, B. (2010). Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep, 62(5), 956-965.
    Lau, Y. S., Patki, G., Das-Panja, K., Le, W. D., & Ahmad, S. O. (2011). Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration. Eur J Neurosci, 33(7), 1264-1274.
    Law, L. L., Rol, R. N., Schultz, S. A., Dougherty, R. J., Edwards, D. F., Koscik, R. L., et al. (2018). Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer's disease. Alzheimers Dement (Amst), 10, 188-195.
    Lee, J. W., Choe, S. S., Jang, H., Kim, J., Jeong, H. W., Jo, H., et al. (2012). AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. J Lipid Res, 53(7), 1277-1286.
    Lin, J., Wu, P. H., Tarr, P. T., Lindenberg, K. S., St-Pierre, J., Zhang, C. Y., et al. (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119(1), 121-135.
    Liu, J., Li, X., Lu, Q., Ren, D., Sun, X., Rousselle, T., et al. (2019). AMPK: a balancer of the renin-angiotensin system. Biosci Rep, 39(9).
    Liu, X., Chhipa, R. R., Nakano, I., & Dasgupta, B. (2014). The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther, 13(3), 596-605.
    Liu, Y., Yan, T., Chu, J. M.-T., Chen, Y., Dunnett, S., Ho, Y.-S., et al. (2019). The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. Lab. Invest., 99(7), 943-957.
    Lu, M., Su, C., Qiao, C., Bian, Y., Ding, J., & Hu, G. (2016). Metformin Prevents Dopaminergic Neuron Death in MPTP/P-Induced Mouse Model of Parkinson's Disease via Autophagy and Mitochondrial ROS Clearance. Int J Neuropsychopharmacol, 19(9).
    Ma, A., Wang, J., Yang, L., An, Y., & Zhu, H. (2017). AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE(-/-) mice. J Lipid Res, 58(8), 1536-1547.
    Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., et al. (2018). Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front. Psychiatry, 9, 509.
    Marosi, K., Bori, Z., Hart, N., Sarga, L., Koltai, E., Radak, Z., et al. (2012). Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience, 226, 21-28.
    Massano, J., & Bhatia, K. P. (2012). Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med, 2(6), a008870.
    Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 16(6), 706-722.
    Meng, S., Cao, J., He, Q., Xiong, L., Chang, E., Radovick, S., et al. (2015). Metformin activates AMP-activated protein kinase by promoting formation of the alphabetagamma heterotrimeric complex. J Biol Chem, 290(6), 3793-3802.
    Meyer, C. W., Ootsuka, Y., & Romanovsky, A. A. (2017). Body temperature measurements for metabolic phenotyping in mice. Front. Physiol, 8, 520.
    Muri, L., Le, N. D., Zemp, J., Grandgirard, D., & Leib, S. L. (2019). Metformin mediates neuroprotection and attenuates hearing loss in experimental pneumococcal meningitis. J. Neuroinflammation, 16(1), 156.
    Nakabeppu, Y., Tsuchimoto, D., Yamaguchi, H., & Sakumi, K. (2007). Oxidative damage in nucleic acids and Parkinson's disease. J Neurosci Res, 85(5), 919-934.
    Niemann, C., Godde, B., Staudinger, U., & Voelcker-Rehage, C. (2014). Exercise-induced changes in basal ganglia volume and cognition in older adults. Neuroscience, 281, 147-163.
    Organization, W. H. (2010). Global recommendations on physical activity for health: World Health Organization.
    Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J, 348 Pt 3, 607-614.
    Park, H., Kaushik, V. K., Constant, S., Prentki, M., Przybytkowski, E., Ruderman, N. B., et al. (2002). Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem, 277(36), 32571-32577.
    Parkinson, J. (2002). An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci, 14(2), 223-236.
    Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., & Ray, C. A. (2004). American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc, 36(3), 533-553.
    Pollard, A. E., Martins, L., Muckett, P. J., Khadayate, S., Bornot, A., Clausen, M., et al. (2019). AMPK activation protects against diet-induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat. Metab., 1(3), 340-349.
    Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92(6), 829-839.
    Schenkman, M., Moore, C. G., Kohrt, W. M., Hall, D. A., Delitto, A., Comella, C. L., et al. (2018). Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol, 75(2), 219-226.
    Schneeberger, M., & Claret, M. (2012). Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Front Neurosci, 6, 185.
    Shaw, R. J. (2009). LKB1 and AMP‐activated protein kinase control of mTOR signalling and growth. Acta physiologica, 196(1), 65-80.
    Tabrizi, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M., & Schapira, A. H. (1999). Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann Neurol, 45(1), 25-32.
    Takeda, R., & Okazaki, K. (2018). Body Temperature Regulation During Exercise and Hyperthermia in Diabetics. J. Diabetes Complicat, 89.
    Tanner, C. M., & Langston, J. W. (1990). Do environmental toxins cause Parkinson's disease? A critical review. Neurology, 40(10 Suppl 3), suppl 17-30; discussion 30-11.
    Thomson, D. M., & Winder, W. W. (2009). AMP‐activated protein kinase control of fat metabolism in skeletal muscle. Acta physiologica, 196(1), 147-154.
    Toyama, E. Q., Herzig, S., Courchet, J., Lewis, T. L., Losón, O. C., Hellberg, K., et al. (2016). AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science, 351(6270), 275-281.
    Tsai, S. F., Ku, N. W., Wang, T. F., Yang, Y. H., Shih, Y. H., Wu, S. Y., et al. (2018). Long-Term Moderate Exercise Rescues Age-Related Decline in Hippocampal Neuronal Complexity and Memory. Gerontology, 64(6), 551-561.
    Tsou, Y. H., Shih, C. T., Ching, C. H., Huang, J. Y., Jen, C. J., Yu, L., et al. (2015). Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp Neurol, 263, 50-62.
    Um, H. S., Kang, E. B., Leem, Y. H., Cho, I. H., Yang, C. H., Chae, K. R., et al. (2008). Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med, 22(4), 529-539.
    Valla, J., Berndt, J. D., & Gonzalez-Lima, F. (2001). Energy hypometabolism in posterior cingulate cortex of Alzheimer's patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci, 21(13), 4923-4930.
    Venderova, K., & Park, D. S. (2012). Programmed cell death in Parkinson's disease. Cold Spring Harb. Protoc, 2(8), a009365.
    Weisová, P., Dávila, D., Tuffy, L. P., Ward, M. W., Concannon, C. G., & Prehn, J. H. (2011). Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid. Redox Signal, 14(10), 1863-1876.
    Winder, W., & Hardie, D. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. Endocrinol. Metab, 270(2), E299-E304.
    Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., et al. (2013). AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell, 49(6), 1167-1175.
    Wu, S. Y., Wang, T. F., Yu, L., Jen, C. J., Chuang, J. I., Wu, F. S., et al. (2011). Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun, 25(1), 135-146.
    Xu, Y., Liu, C., Chen, S., Ye, Y., Guo, M., Ren, Q., et al. (2014). Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease. Cell. Signal, 26(8), 1680-1689.
    Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest, 108(8), 1167-1174.
    Zong, H., Ren, J. M., Young, L. H., Pypaert, M., Mu, J., Birnbaum, M. J., et al. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A, 99(25), 15983-15987.
    Zubala, A., MacGillivray, S., Frost, H., Kroll, T., Skelton, D. A., Gavine, A., et al. (2017). Promotion of physical activity interventions for community dwelling older adults: A systematic review of reviews. PLoS One, 12(7), e0180902.

    無法下載圖示 校內:2025-02-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE