簡易檢索 / 詳目顯示

研究生: 葉信志
Ye, Xin-Zhi
論文名稱: 太陽能玻璃之沖腐蝕損耗及光學性質之研究
The Study on Erosion-Corrosion and Optical Properties of Solar Glass
指導教授: 李旺龍
Li, Wang-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 太陽能玻璃沖腐蝕噴射式沖蝕試驗機pH值累積質量損耗程度區塊圖表面粗糙度紫外光/可見光光譜透射率
外文關鍵詞: Solar glass, Erosion-Corrosion, Wear Map, Surface Roughness, Transmittance
相關次數: 點閱:209下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球晶片型及薄膜太陽電池產業的快速發展,對於基板材料之透明玻璃平板的需求將會迅速提高,太陽能玻璃(photovoltaic glass)將會是產業焦點。未來太陽能產業對太陽能玻璃的需求會更強烈。然而,灰塵的累積及顆粒的侵蝕會影響太陽能技術的能源效率。根據文獻指出,國外大多數太陽能系統模組安裝在乾燥地區,並且會因為玻璃表面的沙塵積聚和砂沖蝕,而導致其性能下降,因此研究了砂沖蝕對表面粗糙度的影響和模擬太陽能系統表面玻璃的透射率。此外,在太陽能玻璃的研究當中,並沒有針對含有溶液的沖蝕損耗進行研究,而不同pH值的沖蝕溶液所產生的沖蝕損耗以及光學性質的影響也沒有被深入的探討。因此本實驗計畫將利用噴射式沖蝕試驗機針對太陽能玻璃,來進行沖腐蝕(使用不同pH值與相同顆粒大小的沖蝕粒子)的實驗,並且配合表面與光學量測設備,對材料在沖蝕試驗前後的特性改變進行探討。可利用本實驗所設計之實驗,了解太陽能玻璃之光學變化受到沖蝕與腐蝕的影響,加上表面粗度儀的輔助,更可以進一步探討沖腐蝕效應對於微觀尺度下,材料之表面形貌之影響。上述之結論將可用以評估太陽能玻璃抵擋外來侵蝕之能力,並分析在何種條件下的沖腐蝕損耗對太陽能玻璃具有顯著的影響。

    According to the literature, most foreign solar system modules are installed in arid areas, and their performance is degraded due to sand accumulation and sand erosion on the glass surface. Therefore, the influence of sand erosion on surface roughness is studied and then simulates the transmittance of the surface glass of a solar system. In addition, in the research of solar glass, the wear loss with the solution was not studied, and the wear loss and the effect of optical properties with different pH values were also not discussed in depth. Therefore, the experimental plan will use the impinging jet erosion apparatus for solar glass to erosion and corrosion (using different pH values and particles of the same size), and also use the surface and optical measurement equipment. The experiments designed in this experiment can be used to understand that the optical changes of solar glass are affected by erosion and corrosion.
    The experiments can be used to understand that the optical changes of solar glass are affected by erosion and corrosion. With the aid of the surface roughness meter, the influence of the erosion effect on the surface topography of the material at the microscopic scale can be further explored.

    目錄 中文摘要………………………………………………………………….................Ⅰ Extended Abstract……………………………………………………………….......II 誌謝………………………………………………………………………………....X 目錄………………………………………………………………………………..XI 表目錄…………………………………………………………….……………...XIV 圖目錄....................................................................................................................XV 符號總表.............................................................................................................XVIII 第一章 緒論與文獻回顧..………………………………………………………...1 1-1. 太陽能模組之組成構造………..…………………...................................6 1-2. 太陽能玻璃材料….………………..…………………..............................9 1-3. 沖腐蝕損耗………………….……………………………...…………...12 1-3-1. 金屬材料………………..……………………………...………...14 1-3-2. 陶瓷材料………………..……………………………...………...17 1-3-3. 玻璃材料…………………………………………………………19 1-4. 研究動機………………….……………………………...………….......20 1-5. 研究目的………………….……………………………...………….......21 第二章 玻璃簡介..……………………………………………………………….22 2-1. 玻璃之發展………..………………….....................................................22 2-2. 玻璃之組成….………………..…………………....................................23 2-3. 玻璃之原料與添加物……….……………………………...…………...24 2-4. 玻璃之製作方法…………….……………………………...…………...25 2-5. 玻璃之應用………………….……………………………...…………...26 第三章 實驗流程..……………………………………………………….............28 3-1. 試片及沖蝕液之準備………..………………….....................................28 3-1-1. 試片………………..……………………………...………...........28 3-1-2. 沖蝕溶液………………..……………………………...………...29 3-1-3. 沖蝕顆粒…………………………………………………………29 3-2. 噴射式沖蝕試驗機.………………..…………………............................30 3-3. 實驗流程………………….……………………………...………….......34 3-4. 實驗設計與成果對照……………………………………...…………....37 第四章 分析儀器………………………………………………………………...38 4-1. 表面粗度儀……………………………………………………………...38 4-1-1. 表面粗度儀之使用動機………………………………………...39 4-2. 紫外光/可見光光譜儀…………………..……………...………………41 4-2-1. 紫外光/可見光光譜儀之使用動機……………………………..45 第五章 結果與討論……………………………………………………………...46 5-1. 沖腐蝕試驗……………………………………………………………...46 5-1-1. 噴射式沖蝕試驗機校正………………………………………...46 5-1-2. 太陽能玻璃之沖腐蝕試驗實驗結果…………………………...50 5-2. 表面粗度儀量測………………………………………………………...60 5-3. 光學顯微鏡觀測………………………………………………………...61 5-4. 紫外光/可見光光譜儀量測……………………………………………..63 第六章 結論.......…………………………………………………........................66 參考文獻…………………………………………………………………………...68   表目錄 表1-1. 太陽能玻璃的物理性質[42]………………………………………...11 表2-1. 玻璃之發展史……………………………………………………….22 表2-2. 玻璃之系統與用途………………………………………………….27 表3-1. 沖蝕溶液酸鹼藥品之調配………………………………………….29 表3-2. 沖蝕顆粒濃度之符號列表………………………………………….36 表5-1. 沖蝕顆粒濃度c (wt%)………………………………………………47 表5-2. 沖蝕速度v (m/s)………………………………………………….....47 表5-3. 沖腐蝕試驗實驗參數……………………………………………….49 表5-4. 經過300分鐘太陽能玻璃沖腐蝕實驗後之材料的總損耗量……..51 表5-5. 經過100分鐘太陽能玻璃沖腐蝕實驗後之材料的總損耗量……..56 圖目錄 圖1-1. 不同氣壓及溫度條件下的水滴尺寸與終端速度關係圖[38]………5 圖1-2. 太陽能模組示意圖[39]………………………………………………8 圖1-3. 太陽能板[59]…………………………………………………………8 圖1-4. 太陽光照射至玻璃的反射、吸收、穿透行為[40]…………………..10 圖1-5. 太陽能玻璃的化學成份分布圖[41]………………………………...11 圖1-6. 沖腐蝕損耗後的管壁內側,箭頭表示受到損耗最明顯的地方[43]13 圖1-7. 經過沖腐蝕後所造成的材料崩壞,箭頭表示損壞的情況[43]……13 圖1-8. 經常被用來模擬沖腐蝕效應的沖蝕顆粒(矽砂)[43]……………....14 圖1-9. 常見金屬材料的材料硬度與沖蝕損耗的關係圖[46]……………...15 圖1-10. 不同尺寸的石英砂顆粒對各種材料進行沖蝕的結果比較[47]…...16 圖1-11. 在pH5環境中的鐵金屬,沖蝕速度與電化學條件之損耗程度圖[48]16 圖1-12-(a). 氧化鋁遭受到90°入射角沖蝕前的表面形貌[51]………………....18 圖1-12-(b). 氧化鋁遭受到90°入射角沖蝕後的表面形貌[51]………………....18 圖1-13. 經過砂沖蝕後的玻璃表面形貌(沖蝕入射角=30°)………………..20 圖1-14. 砂沖蝕試驗之實驗裝置示意圖[48]………………………………...20 圖2-1. 液相、玻璃相及結晶相的熱膨脹行為……………………………...24 圖3-1. 沖蝕前的太陽能玻璃……………………………………………….28 圖3-2. 氧化矽砂…………………………………………………………….30 圖3-3. 噴射式沖蝕試驗機 (Impinging Jet Erosion Apparatus):側視圖…..31 圖3-4. 噴射式沖蝕試驗機 (Impinging Jet Erosion Apparatus):上視圖…..32 圖3-5. 噴射式沖蝕試驗機結構示意圖…………………………………….32 圖3-6. 噴射器示意圖……………………………………………………….33 圖3-7. 噴射器……………………………………………………………….33 圖3-8. 不同孔徑之射出噴嘴(左)及控制噴嘴(右)………………………....34 圖3-9. 實驗規劃圖………………………………………………………….37 圖4-1. 表面粗度儀示意圖………………………………………………….38 圖4-2. 中心線平均粗糙度之求法………………………………………….39 圖4-3. 表面粗度儀SE-1200………………………………………………..40 圖4-4. 表面粗度儀SE-1200之探針………………………………………..40 圖4-5. 紫外光/可見光光譜儀示意圖……………………………………....44 圖4-6. 紫外光/可見光光譜儀原理圖……………………………………....44 圖4-7. 紫外光/可見光光譜儀UV/Vis spectrophotometers – 950, 850, and 650…………………………………………………………………...45 圖5-1. x值和沖蝕速度與顆粒濃度之關係圖……………………………..48 圖5-2. 本實驗所使用的噴射器之尺寸與距離…………………………….48 圖5-3. 太陽能玻璃之累積質量損耗曲線………………………………….50 圖5-4. 太陽能玻璃之累積損耗程度區塊圖……………………………….52 圖5-5. (A)顆粒垂直衝擊玻璃表面,(B)由於差排關係,在接觸點的周圍開始出現裂縫,(C)裂縫逐漸增長,(D)最後玻璃表面會形成凹洞……53 圖5-6. 太陽能玻璃之累積質量損耗曲線(沖蝕角度= 90°)……………….54 圖5-7. 太陽能玻璃之累積質量損耗曲線(沖蝕角度= 75°)……………….55 圖5-8. 太陽能玻璃之累積質量損耗曲線(沖蝕角度= 60°)……………….55 圖5-9. 太陽能玻璃之累積質量損耗曲線(沖蝕角度= 45°)……………….56 圖5-10. 太陽能玻璃之累積損耗程度區塊圖(沖蝕角度= 90°)…………….58 圖5-11. 太陽能玻璃之累積損耗程度區塊圖(沖蝕角度= 75°)…………….58 圖5-12. 太陽能玻璃之累積損耗程度區塊圖(沖蝕角度= 60°)…………….59 圖5-13. 太陽能玻璃之累積損耗程度區塊圖(沖蝕角度= 45°)…………….59 圖5-14. 在pH5.0的沖蝕條件下,不同沖蝕角度對於粗糙度的比較………60 圖5-15. 沖蝕角度為45°的沖蝕條件下,(A)未經沖蝕實驗(B)經過20分鐘沖蝕實驗後(C)經過40分鐘沖蝕實驗後(D)經過60分鐘沖蝕實驗後之玻璃…………………………………………………………….61 圖5-16. 沖蝕角度為90°的沖蝕條件下,(A)未經沖蝕實驗(B)經過20分鐘沖蝕實驗後(C)經過40分鐘沖蝕實驗後(D)經過60分鐘沖蝕實驗後之玻璃…………………………………………………………….62 圖5-17. 沖蝕角度為90°的沖蝕條件下,沖蝕時間對於穿透率的影響……63 圖5-18. 沖蝕角度為75°的沖蝕條件下,沖蝕時間對於穿透率的影響……64 圖5-19. 沖蝕角度為60°的沖蝕條件下,沖蝕時間對於穿透率的影響……64 圖5-20. 沖蝕角度為45°的沖蝕條件下,沖蝕時間對於穿透率的影響……65

    [1] M. S. El-Shobokshy and F. M. Hussein, “Effect of dust with different physical properties on the performance of photovoltaic cells”, Solar energy,vol. 51, No.6, pp.505-511, 1993.
    [2] D. Goossens and E. V. Kerschaever, “Aeolian dust deposition on photovoltaic solar cells : the effects of wind velocity and airborne dust concentration on cell performance”, Solar Energy, vol. 66, No.4, pp.277-289, 1999.
    [3] S. Biryukov, D. Faiman, and A. Goldfeld, “An optical system for the quantitative study of particulate contamination on solar collector surfaces”, Solar energy, vol. 66, No.5, pp.371-378, 1999.
    [4] A. M. El-Nashar, “Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area”, Solar Energy, vol. 75, pp.421-431, 2003.
    [5] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, “Effect of dust on the transparent cover of solar collectors”, Energy Conversion and Management, vol. 47, pp.3192-3203, 2006.
    [6] N. Bouaouadja, S. Bouzid, M. Hamidouche, C. Bousbaa, and M. Madjoubi, “Effects of sandblasting on the efficiencies of solar panels”, Applied Energy, vol. 65, pp.99-105, 2000.
    [7] Kotaro Tagawa, Akifumi Kutani, and Piao Qinglin, “Effect ofSand Erosion of Glass Surface on Performances of Photo-voltaic Module”, Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, vol. 4, ISSN 2079-6226, 2012.
    [8] V. K. Sissakian, N. Al‐Ansari, and S. Knutsson, “Sand and dust storm events in Iraq Natural Science”, vol. 5, pp.1084‐1094, 2013.
    [9] T. Sarver, A. Al‐Qaraghuli, L. L. Kazmerski, “A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches”, Renew Sustain Energy Rev, vol. 22, pp.698‐733, 2013.
    [10] N. Bouaouadja, S. Bouzid, M. Hamidouche, C. Bousbaa, and M. Madjoubi, “Effects of sandblasting on the efficiencies of solar panels”, Appl Energy, vol. 65, pp.99‐105, 2000.
    [11] C. Sansom, P. Comley, D. Bhattacharyya, and N. Macerol, “A comparison of polymer film and glass collectors for concentrating solar power”, Energy Procedia, vol. 49, pp.209‐219, 2014.
    [12] S. Bouzid, N. Bouaouadja, “Effect of impact angle on glass surfaces eroded by sand blasting”, J Eur Ceram Soc, vol. 20, pp.481‐488, 2000.
    [13] M. Karim, S. Naamane, I. El Amrani El Hassani, C. Delord, S. Belcadi, P.Tochon, and A. Bennouna, “Towards the prediction of CSP mirrors wear: methodology of analysis of influencing parameters on the mirrors surface degradation: application in two different sites in Morocco”, Solar Energy, vol. 108, pp.41‐50, 2014.
    [14] Z. Wang, L. Liu, X. Li, and L. Zhao, “An experimental method for analyzing environmental effects of blowing sands on glass abrasion”, Procedia Environmental Sciences, vol. 2, pp.207‐217, 2010.
    [15] S. Bouzid, Z. Azari, “Impact depth on glass surface caused by sand particles”, Appl Mech Mater, vol. 146, pp.197‐212, 2012.
    [16] F. Wiesinger, F. Sutter, A. Fernández‐García, J. Reinhold, and R. Pitz‐Paal, “Sand erosion on solar reflectors: accelerated simulation and comparison with field data”, Solar Energy Materials and Solar Cells, vol.145, pp.303‐313, 2016.
    [17] M. Karim, S. Naamane, C. Delord, and A. Bennouna, “Laboratory simulation of the surface erosion of solar glass mirrors”, Solar Energy, vol. 118, pp.520‐532, 2015.
    [18] RA. Bagnold, “The physics of blown sand and desert dunes”, Courier Corporation, 2012.
    [19] RA. Zakhidov, A. Ismanzhanov, “Investigation of abrasive action of atmospheric particles on the reflectance of mirrors”, Appl Solar Energy (Engl Transl), vol. 16, pp.39‐43, 1980.
    [20] B. Lawn, “Fracture of Brittle Solids”, Cambridge University Press, 1993.
    [21] G. Stachowiak, AW. Batchelor, “Engineering Tribology”, Butterworth‐Heinemann, 2013.
    [22] K. Ilse, M. Werner, V. Naumann, BW. Figgis, C. Hagendorf, and J. Bagdahn, “Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi‐arid climates”, Physica status solidi (RRL)—Rapid Research Letters, vol. 10, pp.525‐529, 2016.
    [23] HK. Elminir, AE. Ghitas, RH. Hamid, F. El‐Hussainy, MM. Beheary, and KM. Abdel‐Moneim, “Effect of dust on the transparent cover of solar collectors”, Energ Conver Manage, vol. 47, pp.3192‐3203, 2006.
    [24] C. Guillemet, “Fracture et Plasticité des Verres”, La Revue de Métallurgie Cit/Science et Génie Des Matériaux, vol. 92, pp. 253-263, 1995.
    [25] C. Bousbaa, “Effect of Annealing and Chemical Strengthening on Soda Lime Glass Erosion Wear by Sand Blasting”, J. of the Europe. Cer. Soc., vol. 23, pp.331-343, 2003.
    [26] C. Bousbaa, M.A. Madjoubi, and N. Bouaouadja, “Effect of Impact Angle on a Soda-Lime Glass Eroded by Sand Blasting”, 6th Europe. Soc. Glass Conference, 2002.
    [27] G. H. Jilbert, J.E. Field, “Synergistic Effects of Rain and Sand Erosion”, Wear, vol. 243, pp.6-17, 2000.
    [28] I. M. Hutchings, “Tribology: Friction and Wear of Engineering Materials”, Metallurgy & Material Science Series, 1992.
    [29] B. R. Lawn, D. B. Marshall, and S. M. Wiederhorn, “Strength Degradation of Glass Impacted with Sharp Particles: II, Tempered Glass”, J. Amer. Cer. Soc., 62 [2-3], pp.71-74, 1997.
    [30] S. Wada, “Effect of the Fracture Toughness of Impact Particle on the Erosive Wear of Ceramics”, J. of the Jap. Soc. Of Powder and Powder Metall., 38, pp.893-894, 1991.
    [31] S. Wada, N. Watanabe, “Solid Particle Erosion of Brittle Materials - Part 4: The Interaction with Material Properties of Target and that of Impingement Particle on Erosive Wear Mechanisms”, Yogyo-Kyokai.Shi, 95 [6], pp.573-578, 1987.
    [32] P. J. Slikkerveer, “Erosion and Damage by Sharp Particles”, Wear 217, pp.237-250, 1998.
    [33] P. J. Slikkerveer, P. C. P. Bouten, and F. C. M. Haas, “High Quality Mechanical Etching of Brittle Materials by Powder Blasting”, Sensors and Actuators 85, pp.296-303, 2000.
    [34] J. E. Ritter, “Erosion Damage in Glass and Alumina”, J. of the Amer. Cer. Soc., vol. 67, pp.769-774, 1984.
    [35] H. McClark, “The influence of the flow field in slurry erosion”, Wear, vol. 152, pp.223-240, 1992.
    [36] J. Postlethwaite, U. Lotz, “Mass transfer at erosion–corrosion roughened surfaces”, Can. J. Chem. Eng. 66, vol .66, pp.75-78, 1988.
    [37] M.M. Stack, N. Corlett, and S. Turgoose, “Some thoughts on modelling the effects of oxygen and particle concentration on the erosion–corrosion of steels in aqueous slurries”, Wear 255, pp.225-236, 2003.
    [38] G.B. Foote, P.S. Du Toit, “Terminal Velocity of Raindrops Aloft”, Institute of Atmospheric Physics, The University of Arizona, vol .8, pp.249-253, 1969.
    [39] L. Heangwoo, “Performance evaluation of a light shelf with a solar module based on the solar module attachment area”, Building and Environment, vol. 159, 2019.
    [40] M. Chandra, “Computation of Solar Radiation and Heat Transmission Properties of Glass for Use in Buildings”, Architectud Science Review, vol. 46, pp.175-186, 2003.
    [41] M. Hasanuzzaman, A. Rafferty, M. Sajjia, and A.-G.Olabi, “Properties of Glass Materials”, Reference Module in Materials Science and Materials Engineering, 2016.
    [42] C. Bousbaa, M. A. Madjoubi, Z. Hamidouche, and N. Bouaouadja, “effect of sand blasting on soda lime glass properties”, Engineering Journal of the University of Qatar, vol. 16, pp.125-138, 2003.
    [43] M.M. Stack, “Bridging the gap between tribology and corrosion:from wear maps to Pourbaix diagrams”, International Materials Reviews, vol. 50, No. 1:1-17, 2005.
    [44] A. Finnie, J. Wolak, and Y. Kabil, “Erosion of metals by solid particles”, Journal of meterials, vol. 2, 2:682-700, 1967.
    [45] A.K. Cousens, I. M. Hutchings, “Proceedings of the 6th international conference on erosion by liquid and solid impact”, Cavendish Laboratory, University of Cambridge, pp.83, 1981.
    [46] Iain Finnie, “Some reflections on the past and future of erosion”, Wear 186-187, pp.1-10, 1995.
    [47] G.P. Tilly, W. Sage, “The interaction of particle and material behaviour in erosion processes”, Wear, vol. 16, pp.447-465, 1970.
    [48] M.M. Stack, B.D. Jana, “Modelling particulate erosion–corrosion in aqueous slurries: some views on the construction of erosion–corrosion maps for a range of pure metals”, Wear, vol. 256, pp.986-1004, 2004.
    [49] A.J. Sparks, I.M. Hutchings, “Effects of erodent recycling in solid particle erosion testing”, Wear, vol. 162-164, pp.139-147, 1993.
    [50] Q. Fang, P. S. Sidky, and M. G. Hocking, “The effect of corrosion and erosion on ceramic materials”, Corrosion Science, vol. 39, pp.511-527, 1997.
    [51] Q. Fang, H. Xu, P. S. Sidky, and M. G. Hocking, “Erosion of ceramic materials by a sand/water slurry jet”, Wear, vol. 224, pp.183-193, 1999.
    [52] A. G. Evans, M. E. Gulden, and M. Rosenblatt, “Impact Damage in Brittle Materials in the Elastic-Plastic Response Régime, Series A, Mathematical and Physical Sciences, vol. 361, pp.343-365, 1978.
    [53] G. L. Sheldon, Ashok Kanhere, “An investigation of impingement erosion using single particles”, Wear, vol. 21, pp.195-209, 1972.
    [54] B. D. Jana, M. M. Stack, “Modelling impact angle effects on erosion–corrosion of pure metals: Construction of materials performance maps”, Wear, vol. 259, pp.243-255, 2005.
    [55] M. M. Stack, B. D. Jana, “Modelling particulate erosion–corrosion regime transitions for Al/Al2O3 and Cu/Al2O3 MMCs in aqueous conditions”, Tribology International, vol. 38, pp.995-1006, 2005.
    [56] M. M. Stack, M. M. Antonov, and I. Hussainova, “Some views on the erosion–corrosion response of bulk chromium carbide based cermets”, Applied Physics, vol. 39, pp.3165-3174, 2006.
    [57] Kotaro Tagawa, Akifumi Kutani, and Piao Qinglin, “Effect of sand erosion of glass surface on performances of photovoltaic module”, Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, vol. 4, 2012.
    [58] B. Agea‐Blanco, C. Meyer, R. Müller, and J. Günster, “Sand erosion of solar glass: Specific energy uptake, total transmittance, and module efficiency”, International Journal of Energy Research, vol. 42, pp.1298–1307, 2018.
    [59] 聚玻網發表於科技, https://kknews.cc/tech/8bxgkkl.html, 2017.

    下載圖示 校內:立即公開
    校外:2021-09-03公開
    QR CODE