| 研究生: |
林炫旻 Lin, Hsuan-Min |
|---|---|
| 論文名稱: |
低溫活化奈米碳纖維/二氧化錳奈米混合結構於超級電容器電極之應用 Low temperature activated-CNFs/MnO2 nanocomposites for use in supercapacitor electrodes |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 奈米碳纖維 、二氧化錳 、超級電容 、微波水熱法 、酸氧化 、X光光電子光譜 |
| 外文關鍵詞: | Carbon nanofiber, MnO2, supercapacitor, microwave-assisted hydrothermal, acid oxidation, XPS |
| 相關次數: | 點閱:167 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這個研究中,分成兩個部份的實驗;在第一部份,使用低溫的酸洗方法來活化碳纖維,利用不同比例配置的硝酸硫酸混合液酸洗碳纖維,接著第二部分的實驗則是選用快速又簡單的微波水熱法的方式來合成二氧化錳在活化碳纖維上,前驅物使用過錳酸鉀作為錳金屬來源,使其水熱於水溶液中作化學反應。材料特性部分,我們可以發現在酸洗過後,經由SEM與BET測試可得知碳纖維表面會因隨著酸洗比例不同而有所變化,但是可由XPS之結果得知在某些酸洗條件下可以大量地引入氧原子至碳纖維表面,進而達到碳纖維我們所想要改質的效果,而此一結果也可由電化學測試中得知;在第二部份中,由XRD確認二氧化錳為δ相,再經過SEM/TEM與TGA發現在此結構中二氧化錳為多數,並藉由BET測量複合材料的比表面積,最後利用XPS得到複合材料中的元素成分組成與元素氧化組態。
電化學部分,取合成後之二氧化錳/碳纖維奈米複合材料作為超級電容之電極材料,做循環伏安法、交流阻抗分析之電化學測試;條件為使用1M Na2SO4水溶液作為電解質,電位窗為-0.2-0.8V。酸洗變因之樣品以1-20SN46為最佳擁有229.9F/g電容值,其餘的二氧化錳/碳纖維奈米複合材料大部份介於100-190F/g的範圍內,而最低的1-20SN19則是只有93.5 F/g電容值。
Summary:
In this work, our research was separated into the two parts. At the first part, we employed the low temperature to activate the Carbon nanofiber (CNFs) by the various sulfuric acid/nitric acid ratio. At the second part, the activated-CNFs/MnO2 nanocomposites was synthesized using a simple and rapid (5min) microwave-assisted hydrothermal technique through the decomposition of KMnO4 in various activated-CNFs. The hydrothermal solution consisted of KMnO4 and HCl. We check the surface of CNFs after acid-treatment by SEM and BET. To determine the oxidation of CNFs and the functional groups on the surface, XPS was used. The structure of activated-CNFs/MnO2 nanocomposites was detected by XRD. The morphology of activated-CNFs/MnO2 nanocomposites was obtained by SEM/TEM. We used TGA to know the MnO2 content in the activated-CNFs/MnO2 nanocomposites. XPS was employed to get the chemical composition and chemical bonding.
The obtained activated-CNFs/MnO2 nanocomposites was made into electrodes for use in supercapacitors. The supercapacitors were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy in 1M Na2SO4 within potential window -0.2~0.8V. The samples 1-20SN46 obtain the best specific capacitance performance (229.6F/g) .
[1] P. Simon , B. Dunn, Science, 343 (2014) 1210-1211.
[2] M. Winter, R.J. Brodd, Chemical Reviews, 105 (2005) 1021-1021.
[3] P. Simon, Y. Gogotsi, Nature Materials, 7 (2008) 845-854.
[4] R. Kotz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
[5] R.A. Huggins, Solid State Ionics, 134 (2000) 179-195.
[6] A. Burke, Journal of Power Sources, 91 (2000) 37-50.
[7] C. Lin, J.A. Ritter, B.N. Popov, Journal of The Electrochemical Society, 145 (1998) 4097-4103.
[8] E. Frackowiak, F. Beguin, Carbon, 39 (2001) 937-950.
[9] C.M. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Applied Physics Letters, 70 (1997) 1480-1482.
[10] H.Y. Lee, J.B. Goodenough, Journal of Solid State Chemistry, 148 (1999) 81-84.
[11] J.P. Zheng, P.J. Cygan, T.R. Jow, Journal of The Electrochemical Society, 142 (1995) 2699-2703.
[12] C.C. Hu, T.W. Tsou, Electrochemistry Communications, 4 (2002) 105-109.
[13] S. Ghosh, O. Inganas, Advanced Materials, 11 (1999) 1214-1218.
[14] V. Gupta, N. Miura, Electrochemical and Solid-State Letters, 8 (2005) A630-A632.
[15] A.F. Burke , 95 PROCEEDINGS OF THE IEEE (2007) 806-820.
[16] H. Xia, Y. Shirley, Meng, G. Yuan, C. Cui, L. Lu, Electrochemical and Solid-State Letters, 15 (2012) A60.
[17] Y. Li, H.Q. Xie, J.F. Wang, L.F. Chen, Materials Letters, 65 (2011) 403-405.
[18] X.R. Liu, P.G. Pickup, Journal of Solid State Electrochemistry, 14 (2010) 231-240.
[19] B. Xu, F. Wu, S. Chen, C.Z. Zhang, G.P. Cao, Y.S. Yang, Electrochimica Acta, 52 (2007) 4595-4598.
[20] H.A. Andreas, B.E. Conway, Electrochimica Acta, 51 (2006) 6510-6520.
[21] B.E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer-Plenum ed., New York 1999.
[22] A. J. Bard; L. R. Faulkner Electrochemical Methods, Fundamentals and Applications; 2nd ed.; John Wiley and Sons, INC: New York, 2001 [23] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Journal of the American Chemical Society, 132 (2010) 7472-7477.
[24] E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Beguin, Journal of The Electrochemical Society, 152 (2005) A229-A235.
[25] C.C. Hu, 電化學原理與方法, 五南圖書, 2002.
[26] E, Frackowiak; F, Beguin, Carbon, 39 (2001) 937–950.
[27] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Journal of Materials Chemistry, 22 (2012) 767-784.
[28] T.-C. Weng, H. Teng, Journal of The Electrochemical Society, 148 (2001) A368.
[29] G.A. Ferrero, M. Sevilla, A.B. Fuertes, Carbon, 88 (2015) 239-251.
[30] E. Redondo, J. Carretero-González, E. Goikolea, J. Ségalini, R. Mysyk, Electrochimica Acta, 160 (2015) 178-184.
[31] C.-W. Huang, C.-M. Chuang, J.-M. Ting, H. Teng, Journal of Power Sources, 183 (2008) 406-410.
[32] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Applied Physics Letters, 77 (2000) 2421.
[33] C.W. Huang, H.S. Teng, Journal of The Electrochemical Society, 155 (2008) A739-A744.
[34] D. Qu, Journal of Power Sources, 109 (2002) 403-411.
[35] Y.C. Chiang, W.H. Lin, Y.C. Chang, Applied Surface Science, 257 (2011) 2401-2410.
[36] Y.R. Nian, H. Teng, Journal of The Electrochemical Society, 149 (2002) A1008.
[37] Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Advanced materials, 23 (2011) 4828-4850.
[38] A.L.O. C. Prado-burgurete, F. Rodrfguez-reinoso, C. Salinas-martfnez de Lecea, Journal of Catalysis, 115 (1989) 98-106.
[39] Y. Liang, H. Zhang, B. Yi, Z. Zhang, Z. Tan, Carbon, 43 (2005) 3144-3152.
[40] T. Momma , T. Osaka , Y. Ushio , Y. Sawada , Journal of Power Sources, 60 (1996) 249-253.
[41] S. Bhati, J.S. Mahur, S. Dixit, O.N. Chobey, Carbon letters, 15 (2014) 45-49.
[42] A.B. Dongil, B. Bachiller-Baeza, A. Guerrero-Ruiz, I. Rodriguez-Ramos, A. Martinez-Alonso, J.M. Tascon, Journal of colloid and interface science, 355 (2011) 179-189.
[43] C.H. Kim, S.I. Pyun, H.C. Shin, Journal of The Electrochemical Society, 149 (2002) A93.
[44] Y. Yan, T. Kuila, N.H. Kim, J.H. Lee, Carbon, 74 (2014) 195-206.
[45] M.N. M. Nakamura, K. Yamamoto, Journal of Power Sources, 60 (1996) 225-231.
[46] K.V. Sankar, R.K. Selvan, Journal of Power Sources, 275 (2015) 399-407.
[47] P. Sekar, B. Anothumakkool, S. Kurungot, ACS applied materials & interfaces, 7 (2015) 7661-7669.
[48] X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi, J. Zhou, Nano Energy, 6 (2014) 1-9.
[49] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, Journal of Power Sources, 139 (2005) 371-378.
[50] J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, Journal of Power Sources, 162 (2006) 620-628.
[51] N.L. Wu, S.Y. Wang, C.Y. Han, D.S. Wu, L.R. Shiue, Journal of Power Sources, 113 (2003) 173-178.
[52] G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Chemphyschem, 7 (2006) 296-319.
[53] B. Ming, J. Li, F. Kang, G. Pang, Y. Zhang, L. Chen, J. Xu, X. Wang, Journal of Power Sources, 198 (2012) 428-431.
[54] J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, F. Wei, Carbon, 48 (2010) 3825-3833.
[55] X. Zhang, X. Sun, H. Zhang, D. Zhang, Y. Ma, Electrochimica Acta, 87 (2013) 637-644.
[56] H. Huang, W. Zhang, Y. Fu, X. Wang, Electrochimica Acta, 152 (2015) 480-488.
[57] L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Journal of Physical Chemistry C, 118 (2014) 22865-22872.
[58] Y. Su, I. Zhitomirsky, Journal of Power Sources, 267 (2014) 235-242.
[59] H. Zhong Chi, G. Zhang, L. Gao, K. Su, Z. Ji, Materials Letters, 106 (2013) 197-199.
[60] S. Jiang, T. Shi, D. Liu, H. Long, S. Xi, F. Wu, X. Li, Q. Xia, Z. Tang, Journal of Power Sources, 262 (2014) 494-500.
[61] D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang, F. Qu, Electrochimica Acta, 161 (2015) 427-435.
[62] Q. Yang, X.T. Zhang, M.Y. Zhang, Y. Gao, H. Gao, X.C. Liu, H. Liu, K.W. Wong, W.M. Lau, Journal of Power Sources, 272 (2014) 654-660.
[63] Y. Jiang, X. Ling, Z. Jiao, L. Li, Q. Ma, M. Wu, Y. Chu, B. Zhao, Electrochimica Acta, 153 (2015) 246-253.
[64] Y. Zhang, Q.Q. Yao, H.L. Gao, L.Z. Wang, X.L. Jia, A.Q. Zhang, Y.H. Song, T.C. Xia, H.C. Dong, Powder Technology, 262 (2014) 150-155.
[65] H. Zheng, J. Wang, Y. Jia, C.A. Ma, Journal of Power Sources, 216 (2012) 508-514.
[66] A.J.F. Bard, L. R. , Electrochemical Methods Fundamental and Applications, Jhon Wiley & Sons, Canada, 1980.
[67] L.R.F. A. J. Bard, Electrochemical Principles, Methods and Applications, Oxford University, Britain, 1996.
[68] A.M.O.B. C. M. Brett, Electrochemistry-Principles, Methods, and Applications, Oxford, New York, 1993.
[69] C.C. Hu, W.C. Chen, K.H. Chang, Journal of The Electrochemical Society, 151 (2004) A281-A290.
[70] J, Zhang; HL, Zou; Q, Qing, The Journal of Physical Chemistry B, 107 (2003) 3712-3718.
[71] A.R. Ferrari , J. Robertson, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 362 ( 2004) 2477-2512.
[72] R.C. Hyer, M. Green, S.C. Sharma, Physical Review B, 49 (1994) 14573-14581.
[73] S. Morales-Torres, T.L. Silva, L.M. Pastrana-Martinez, A.T. Brandao, J.L. Figueiredo, A.M. Silva, Physical chemistry chemical physics : PCCP, 16 (2014) 12237-12250.
[74] Y. Xing, L. Li, C. C. Chusuei, R.V. Hull, Langmuir, 21 (2005) 4185-4190.
[75] M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari, Electrochimica Acta, 53 (2008) 4607-4614.
[76] S.C. Pang, M.A. Anderson, T.W. Chapman, Journal of The Electrochemical Society, 147 (2000) 444-450.
[77] S.E. Chun, S.I. Pyun, G.J. Lee, Electrochimica Acta, 51 (2006) 6479-6486.
[78] L.L. Zhang, T. Wei, W. Wang, X.S. Zhao, Microporous and Mesoporous Materials, 123 (2009) 260-267.
[79] O. Ghodbane, J.L. Pascal, B. Fraisse, F. Favier, ACS applied materials & interfaces, 2 (2010) 3493-3505.
[80] M. Toupin, T. Brousse, D. Belanger, Chemistry of Materials, 16 (2004) 3184-3190.
[81] M. Huang, R. Mi, H. Liu, F. Li, X.L. Zhao, W. Zhang, S.X. He, Y.X. Zhang, Journal of Power Sources, 269 (2014) 760-767.
[82] J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Journal of Power Sources, 224 (2013) 86-92.
[83] B. Anothumakkool, S. Kurungot, Chemical communications, 50 (2014) 7188-7190.
[84] S. Devaraj, N. Munichandraiah, Journal of Physical Chemistry C, 112 (2008) 4406-4417.
[85] L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse, Journal of Physical Chemistry C, 112 (2008) 7270-7277.
[86] H.T. Zhu, J. Luo, H.X. Yang, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, Journal of Physical Chemistry C, 112 (2008) 17089-17094.
[87] T.B. Mathieu Toupin, D. Belanger, Chemistry of Materials, 16 (2004) 3184-3190.
[88] O. Ghodbane, M. Louro, L. Coustan, A. Patru, F. Favier, Journal of the Electrochemical Society, 160 (2013) A2315-A2321.